Karun Anantharaman


pdf bib
SSN_MLRG1@LT-EDI-ACL2022: Multi-Class Classification using BERT models for Detecting Depression Signs from Social Media Text
Karun Anantharaman | Angel S | Rajalakshmi Sivanaiah | Saritha Madhavan | Sakaya Milton Rajendram
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion

DepSign-LT-EDI@ACL-2022 aims to ascer-tain the signs of depression of a person fromtheir messages and posts on social mediawherein people share their feelings and emo-tions. Given social media postings in English,the system should classify the signs of depres-sion into three labels namely “not depressed”,“moderately depressed”, and “severely de-pressed”. To achieve this objective, we haveadopted a fine-tuned BERT model. This solu-tion from team SSN_MLRG1 achieves 58.5%accuracy on the DepSign-LT-EDI@ACL-2022test set.

pdf bib
SSN_MLRG1 at SemEval-2022 Task 10: Structured Sentiment Analysis using 2-layer BiLSTM
Karun Anantharaman | Divyasri K | Jayannthan Pt | Angel S | Rajalakshmi Sivanaiah | Sakaya Milton Rajendram | Mirnalinee T T
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

Task 10 in SemEval 2022 is a composite task which entails analysis of opinion tuples, and recognition and demarcation of their nature. In this paper, we will elaborate on how such a methodology is implemented, how it is undertaken for a Structured Sentiment Analysis, and the results obtained thereof. To achieve this objective, we have adopted a bi-layered BiLSTM approach. In our research, a variation on the norm has been effected towards enhancement of accuracy, by basing the categorization meted out to an individual member as a by-product of its adjacent members, using specialized algorithms to ensure the veracity of the output, which has been modelled to be the holistically most accurate label for the entire sequence. Such a strategy is superior in terms of its parsing accuracy and requires less time. This manner of action has yielded an SF1 of 0.33 in the highest-performing configuration.