Kashob Kumar Roy
2024
Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs
Bowen Jin
|
Chulin Xie
|
Jiawei Zhang
|
Kashob Kumar Roy
|
Yu Zhang
|
Zheng Li
|
Ruirui Li
|
Xianfeng Tang
|
Suhang Wang
|
Yu Meng
|
Jiawei Han
Findings of the Association for Computational Linguistics: ACL 2024
Large language models (LLMs), while exhibiting exceptional performance, suffer from hallucinations, especially on knowledge-intensive tasks. Existing works propose to augment LLMs with individual text units retrieved from external knowledge corpora to alleviate the issue. However, in many domains, texts are interconnected (e.g., academic papers in a bibliographic graph are linked by citations and co-authorships) which form a (text-attributed) graph. The knowledge in such graphs is encoded not only in single texts/nodes but also in their associated connections. To facilitate the research of augmenting LLMs with graphs, we manually construct a Graph Reasoning Benchmark dataset called GRBench, containing 1,740 questions that can be answered with the knowledge from 10 domain graphs. Then, we propose a simple and effective framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively. Each Graph-CoT iteration consists of three sub-steps: LLM reasoning, LLM-graph interaction, and graph execution. We conduct systematic experiments with three LLM backbones on GRBench, where Graph-CoT outperforms the baselines consistently. The code is available at https://github.com/PeterGriffinJin/Graph-CoT/.
ConTReGen: Context-driven Tree-structured Retrieval for Open-domain Long-form Text Generation
Kashob Kumar Roy
|
Pritom Saha Akash
|
Kevin Chen-Chuan Chang
|
Lucian Popa
Findings of the Association for Computational Linguistics: EMNLP 2024
Open-domain long-form text generation requires generating coherent, comprehensive responses that address complex queries with both breadth and depth. This task is challenging due to the need to accurately capture diverse facets of input queries. Existing iterative retrieval-augmented generation (RAG) approaches often struggle to delve deeply into each facet of complex queries and integrate knowledge from various sources effectively. This paper introduces ConTReGen, a novel framework that employs a context-driven, tree-structured retrieval approach to enhance the depth and relevance of retrieved content. ConTReGen integrates a hierarchical, top-down in-depth exploration of query facets with a systematic bottom-up synthesis, ensuring comprehensive coverage and coherent integration of multifaceted information. Extensive experiments on multiple datasets, including LFQA and ODSUM, alongside a newly introduced dataset, ODSUM-WikiHow, demonstrate that ConTReGen outperforms existing state-of-the-art RAG models.
Search
Fix data
Co-authors
- Pritom Saha Akash 1
- Kevin Chen-Chuan Chang 1
- Jiawei Han 1
- Bowen Jin 1
- Zheng Li 1
- show all...