Katarzyna Pruś


2024

pdf bib
Human Temporal Inferences Go Beyond Aspectual Class
Katarzyna Pruś | Mark Steedman | Adam Lopez
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Past work in NLP has proposed the task of classifying English verb phrases into situation aspect categories, assuming that these categories play an important role in tasks requiring temporal reasoning. We investigate this assumption by gathering crowd-sourced judgements about aspectual entailments from non-expert, native English participants. The results suggest that aspectual class alone is not sufficient to explain the response patterns of the participants. We propose that looking at scenarios which can feasibly accompany an action description contributes towards a better explanation of the participants’ answers. A further experiment using GPT-3.5 shows that its outputs follow different patterns than human answers, suggesting that such conceivable scenarios cannot be fully accounted for in the language alone. We release our dataset to support further research.