Katerina Korre


2022

pdf bib
LeaningTower@LT-EDI-ACL2022: When Hope and Hate Collide
Arianna Muti | Marta Marchiori Manerba | Katerina Korre | Alberto Barrón-Cedeño
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion

The 2022 edition of LT-EDI proposed two tasks in various languages. Task Hope Speech Detection required models for the automatic identification of hopeful comments for equality, diversity, and inclusion. Task Homophobia/Transphobia Detection focused on the identification of homophobic and transphobic comments. We targeted both tasks in English by using reinforced BERT-based approaches. Our core strategy aimed at exploiting the data available for each given task to augment the amount of supervised instances in the other. On the basis of an active learning process, we trained a model on the dataset for Task i and applied it to the dataset for Task j to iteratively integrate new silver data for Task i. Our official submissions to the shared task obtained a macro-averaged F1 score of 0.53 for Hope Speech and 0.46 for Homo/Transphobia, placing our team in the third and fourth positions out of 11 and 12 participating teams respectively.

2021

pdf bib
ELERRANT: Automatic Grammatical Error Type Classification for Greek
Katerina Korre | Marita Chatzipanagiotou | John Pavlopoulos
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

In this paper, we introduce the Greek version of the automatic annotation tool ERRANT (Bryant et al., 2017), which we named ELERRANT. ERRANT functions as a rule-based error type classifier and was used as the main evaluation tool of the systems participating in the BEA-2019 (Bryant et al., 2019) shared task. Here, we discuss grammatical and morphological differences between English and Greek and how these differences affected the development of ELERRANT. We also introduce the first Greek Native Corpus (GNC) and the Greek WikiEdits Corpus (GWE), two new evaluation datasets with errors from native Greek learners and Wikipedia Talk Pages edits respectively. These two datasets are used for the evaluation of ELERRANT. This paper is a sole fragment of a bigger picture which illustrates the attempt to solve the problem of low-resource languages in NLP, in our case Greek.

2020

pdf bib
ERRANT: Assessing and Improving Grammatical Error Type Classification
Katerina Korre | John Pavlopoulos
Proceedings of the The 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature

Grammatical Error Correction (GEC) is the task of correcting different types of errors in written texts. To manage this task, large amounts of annotated data that contain erroneous sentences are required. This data, however, is usually annotated according to each annotator’s standards, making it difficult to manage multiple sets of data at the same time. The recently introduced Error Annotation Toolkit (ERRANT) tackled this problem by presenting a way to automatically annotate data that contain grammatical errors, while also providing a standardisation for annotation. ERRANT extracts the errors and classifies them into error types, in the form of an edit that can be used in the creation of GEC systems, as well as for grammatical error analysis. However, we observe that certain errors are falsely or ambiguously classified. This could obstruct any qualitative or quantitative grammatical error type analysis, as the results would be inaccurate. In this work, we use a sample of the FCE coprus (Yannakoudakis et al., 2011) for secondary error type annotation and we show that up to 39% of the annotations of the most frequent type should be re-classified. Our corrections will be publicly released, so that they can serve as the starting point of a broader, collaborative, ongoing correction process.