Katri Hiovain-Asikainen


2023

pdf bib
GiellaLT — a stable infrastructure for Nordic minority languages and beyond
Flammie Pirinen | Sjur Moshagen | Katri Hiovain-Asikainen
Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)

Long term language technology infrastructures are critical for continued maintenance of language technology based software that is used to support the use of languages in digital world. In Nordic area we have languages ranging from well-resourced national majority languages like Norwegian, Swedish and Finnish as well as minoritised, unresourced and indigenous languages like Sámi languages. We present an infrastructure that has been build in over 20 years time that supports building language technology and tools for most of the Nordic languages as well as many of the languages all over the world, with focus on Sámi and other indigenous, minoritised and unresourced languages. We show that one common infrastructure can be used to build tools from keyboards and spell-checkers to machine translators, grammar checkers and text-to-speech as well as automatic speech recognition.

2022

pdf bib
Building Open-source Speech Technology for Low-resource Minority Languages with SáMi as an Example – Tools, Methods and Experiments
Katri Hiovain-Asikainen | Sjur Moshagen
Proceedings of the 1st Annual Meeting of the ELRA/ISCA Special Interest Group on Under-Resourced Languages

This paper presents a work-in-progress report of an open-source speech technology project for indigenous Sami languages. A less detailed description of this work has been presented in a more general paper about the whole GiellaLT language infrastructure, submitted to the LREC 2022 main conference. At this stage, we have designed and collected a text corpus specifically for developing speech technology applications, namely Text-to-speech (TTS) and Automatic speech recognition (ASR) for the Lule and North Sami languages. We have also piloted and experimented with different speech synthesis technologies using a miniature speech corpus as well as developed tools for effective processing of large spoken corpora. Additionally, we discuss effective and mindful use of the speech corpus and also possibilities to use found/archive materials for training an ASR model for these languages.

pdf bib
Unmasking the Myth of Effortless Big Data - Making an Open Source Multi-lingual Infrastructure and Building Language Resources from Scratch
Linda Wiechetek | Katri Hiovain-Asikainen | Inga Lill Sigga Mikkelsen | Sjur Moshagen | Flammie Pirinen | Trond Trosterud | Børre Gaup
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Machine learning (ML) approaches have dominated NLP during the last two decades. From machine translation and speech technology, ML tools are now also in use for spellchecking and grammar checking, with a blurry distinction between the two. We unmask the myth of effortless big data by illuminating the efforts and time that lay behind building a multi-purpose corpus with regard to collecting, mark-up and building from scratch. We also discuss what kind of language technology minority languages actually need, and to what extent the dominating paradigm has been able to deliver these tools. In this context we present our alternative to corpus-based language technology, which is knowledge-based language technology, and we show how this approach can provide language technology solutions for languages being outside the reach of machine learning procedures. We present a stable and mature infrastructure (GiellaLT) containing more than hundred languages and building a number of language technology tools that are useful for language communities.