Katsuki Chousa


pdf bib
JaParaPat: A Large-Scale Japanese-English Parallel Patent Application Corpus
Masaaki Nagata | Makoto Morishita | Katsuki Chousa | Norihito Yasuda
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

We constructed JaParaPat (Japanese-English Parallel Patent Application Corpus), a bilingual corpus of more than 300 million Japanese-English sentence pairs from patent applications published in Japan and the United States from 2000 to 2021. We obtained the publication of unexamined patent applications from the Japan Patent Office (JPO) and the United States Patent and Trademark Office (USPTO). We also obtained patent family information from the DOCDB, that is a bibliographic database maintained by the European Patent Office (EPO). We extracted approximately 1.4M Japanese-English document pairs, which are translations of each other based on the patent families, and extracted about 350M sentence pairs from the document pairs using a translation-based sentence alignment method whose initial translation model is bootstrapped from a dictionary-based sentence alignment. We experimentally improved the accuracy of the patent translations by 20 bleu points by adding more than 300M sentence pairs obtained from patent applications to 22M sentence pairs obtained from the web.

pdf bib
WikiSplit++: Easy Data Refinement for Split and Rephrase
Hayato Tsukagoshi | Tsutomu Hirao | Makoto Morishita | Katsuki Chousa | Ryohei Sasano | Koichi Takeda
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The task of Split and Rephrase, which splits a complex sentence into multiple simple sentences with the same meaning, improves readability and enhances the performance of downstream tasks in natural language processing (NLP). However, while Split and Rephrase can be improved using a text-to-text generation approach that applies encoder-decoder models fine-tuned with a large-scale dataset, it still suffers from hallucinations and under-splitting. To address these issues, this paper presents a simple and strong data refinement approach. Here, we create WikiSplit++ by removing instances in WikiSplit where complex sentences do not entail at least one of the simpler sentences and reversing the order of reference simple sentences. Experimental results show that training with WikiSplit++ leads to better performance than training with WikiSplit, even with fewer training instances. In particular, our approach yields significant gains in the number of splits and the entailment ratio, a proxy for measuring hallucinations.


pdf bib
NT5 at WMT 2022 General Translation Task
Makoto Morishita | Keito Kudo | Yui Oka | Katsuki Chousa | Shun Kiyono | Sho Takase | Jun Suzuki
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper describes the NTT-Tohoku-TokyoTech-RIKEN (NT5) team’s submission system for the WMT’22 general translation task. This year, we focused on the English-to-Japanese and Japanese-to-English translation tracks. Our submission system consists of an ensemble of Transformer models with several extensions. We also applied data augmentation and selection techniques to obtain potentially effective training data for training individual Transformer models in the pre-training and fine-tuning scheme. Additionally, we report our trial of incorporating a reranking module and the reevaluated results of several techniques that have been recently developed and published.

pdf bib
JParaCrawl v3.0: A Large-scale English-Japanese Parallel Corpus
Makoto Morishita | Katsuki Chousa | Jun Suzuki | Masaaki Nagata
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Most current machine translation models are mainly trained with parallel corpora, and their translation accuracy largely depends on the quality and quantity of the corpora. Although there are billions of parallel sentences for a few language pairs, effectively dealing with most language pairs is difficult due to a lack of publicly available parallel corpora. This paper creates a large parallel corpus for English-Japanese, a language pair for which only limited resources are available, compared to such resource-rich languages as English-German. It introduces a new web-based English-Japanese parallel corpus named JParaCrawl v3.0. Our new corpus contains more than 21 million unique parallel sentence pairs, which is more than twice as many as the previous JParaCrawl v2.0 corpus. Through experiments, we empirically show how our new corpus boosts the accuracy of machine translation models on various domains. The JParaCrawl v3.0 corpus will eventually be publicly available online for research purposes.


pdf bib
Input Augmentation Improves Constrained Beam Search for Neural Machine Translation: NTT at WAT 2021
Katsuki Chousa | Makoto Morishita
Proceedings of the 8th Workshop on Asian Translation (WAT2021)

This paper describes our systems that were submitted to the restricted translation task at WAT 2021. In this task, the systems are required to output translated sentences that contain all given word constraints. Our system combined input augmentation and constrained beam search algorithms. Through experiments, we found that this combination significantly improves translation accuracy and can save inference time while containing all the constraints in the output. For both En->Ja and Ja->En, our systems obtained the best evaluation performances in automatic and human evaluation.


pdf bib
Incorporating Noisy Length Constraints into Transformer with Length-aware Positional Encodings
Yui Oka | Katsuki Chousa | Katsuhito Sudoh | Satoshi Nakamura
Proceedings of the 28th International Conference on Computational Linguistics

Neural Machine Translation often suffers from an under-translation problem due to its limited modeling of output sequence lengths. In this work, we propose a novel approach to training a Transformer model using length constraints based on length-aware positional encoding (PE). Since length constraints with exact target sentence lengths degrade translation performance, we add random noise within a certain window size to the length constraints in the PE during the training. In the inference step, we predict the output lengths using input sequences and a BERT-based length prediction model. Experimental results in an ASPEC English-to-Japanese translation showed the proposed method produced translations with lengths close to the reference ones and outperformed a vanilla Transformer (especially in short sentences) by 3.22 points in BLEU. The average translation results using our length prediction model were also better than another baseline method using input lengths for the length constraints. The proposed noise injection improved robustness for length prediction errors, especially within the window size.

pdf bib
SpanAlign: Sentence Alignment Method based on Cross-Language Span Prediction and ILP
Katsuki Chousa | Masaaki Nagata | Masaaki Nishino
Proceedings of the 28th International Conference on Computational Linguistics

We propose a novel method of automatic sentence alignment from noisy parallel documents. We first formalize the sentence alignment problem as the independent predictions of spans in the target document from sentences in the source document. We then introduce a total optimization method using integer linear programming to prevent span overlapping and obtain non-monotonic alignments. We implement cross-language span prediction by fine-tuning pre-trained multilingual language models based on BERT architecture and train them using pseudo-labeled data obtained from unsupervised sentence alignment method. While the baseline methods use sentence embeddings and assume monotonic alignment, our method can capture the token-to-token interaction between the tokens of source and target text and handle non-monotonic alignments. In sentence alignment experiments on English-Japanese, our method achieved 70.3 F1 scores, which are +8.0 points higher than the baseline method. In particular, our method improved by +53.9 F1 scores for extracting non-parallel sentences. Our method improved the downstream machine translation accuracy by 4.1 BLEU scores when the extracted bilingual sentences are used for fine-tuning a pre-trained Japanese-to-English translation model.

pdf bib
A Supervised Word Alignment Method based on Cross-Language Span Prediction using Multilingual BERT
Masaaki Nagata | Katsuki Chousa | Masaaki Nishino
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We present a novel supervised word alignment method based on cross-language span prediction. We first formalize a word alignment problem as a collection of independent predictions from a token in the source sentence to a span in the target sentence. Since this step is equivalent to a SQuAD v2.0 style question answering task, we solve it using the multilingual BERT, which is fine-tuned on manually created gold word alignment data. It is nontrivial to obtain accurate alignment from a set of independently predicted spans. We greatly improved the word alignment accuracy by adding to the question the source token’s context and symmetrizing two directional predictions. In experiments using five word alignment datasets from among Chinese, Japanese, German, Romanian, French, and English, we show that our proposed method significantly outperformed previous supervised and unsupervised word alignment methods without any bitexts for pretraining. For example, we achieved 86.7 F1 score for the Chinese-English data, which is 13.3 points higher than the previous state-of-the-art supervised method.