Kazuhiro Ito
2024
Loneliness Episodes: A Japanese Dataset for Loneliness Detection and Analysis
Naoya Fujikawa
|
Nguyen Toan
|
Kazuhiro Ito
|
Shoko Wakamiya
|
Eiji Aramaki
Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
Loneliness, a significant public health concern, is closely connected to both physical and mental well-being. Hence, detection and intervention for individuals experiencing loneliness are crucial. Identifying loneliness in text is straightforward when it is explicitly stated but challenging when it is implicit. Detecting implicit loneliness requires a manually annotated dataset because whereas explicit loneliness can be detected using keywords, implicit loneliness cannot be. However, there are no freely available datasets with clear annotation guidelines for implicit loneliness. In this study, we construct a freely accessible Japanese loneliness dataset with annotation guidelines grounded in the psychological definition of loneliness. This dataset covers loneliness intensity and the contributing factors of loneliness. We train two models to classify whether loneliness is expressed and the intensity of loneliness. The model classifying loneliness versus non-loneliness achieves an F1-score of 0.833, but the model for identifying the intensity of loneliness has a low F1-score of 0.400, which is likely due to label imbalance and a shortage of a certain label in the dataset. We validate performance in another domain, specifically X (formerly Twitter), and observe a decrease. In addition, we propose improvement suggestions for domain adaptation.
Estimation of Happiness Changes through Longitudinal Analysis of Employees’ Texts
Junko Hayashi
|
Kazuhiro Ito
|
Masae Manabe
|
Yasushi Watanabe
|
Masataka Nakayama
|
Yukiko Uchida
|
Shoko Wakamiya
|
Eiji Aramaki
Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
Measuring happiness as a determinant of well-being is increasingly recognized as crucial. While previous studies have utilized free-text descriptions to estimate happiness on a broad scale, limited research has focused on tracking individual fluctuations in happiness over time owing to the challenges associated with longitudinal data collection. This study addresses this issue by obtaining longitudinal data from two workplaces over two and six months respectively.Subsequently, the data is used to construct a happiness estimation model and assess individual happiness levels.Evaluation of the model performance using correlation coefficients shows variability in the correlation values among individuals.Notably, the model performs satisfactorily in estimating 9 of the 11 users’ happiness scores, with a correlation coefficient of 0.4 or higher. To investigate the factors affecting the model performance, we examine the relationship between the model performance and variables such as sentence length, lexical diversity, and personality traits. Correlations are observed between these features and model performance.
Search
Fix data
Co-authors
- Eiji Aramaki 2
- Shoko Wakamiya 2
- Naoya Fujikawa 1
- Junko Hayashi 1
- Masae Manabe 1
- show all...