Ke Ding
2024
Learning to Maximize Mutual Information for Chain-of-Thought Distillation
Xin Chen
|
Hanxian Huang
|
Yanjun Gao
|
Yi Wang
|
Jishen Zhao
|
Ke Ding
Findings of the Association for Computational Linguistics: ACL 2024
Knowledge distillation, the technique of transferring knowledge from large, complex models to smaller ones, marks a pivotal step towards efficient AI deployment. Distilling Step-by-Step (DSS), a novel method utilizing chain-of-thought (CoT) distillation, has demonstrated promise by imbuing smaller models with the superior reasoning capabilities of their larger counterparts. In DSS, the distilled model acquires the ability to generate rationales and predict labels concurrently through a multi-task learning framework. However, DSS overlooks the intrinsic relationship between the two training tasks, leading to ineffective integration of CoT knowledge with the task of label prediction. To this end, we investigate the mutual relationship of the two tasks from Information Bottleneck perspective and formulate it as maximizing the mutual information of the representation features of the two tasks. We propose a variational approach to solve this optimization problem using a learning-based method. Our experimental results across four datasets demonstrate that our method outperforms the state-of-the-art DSS. Our findings offer insightful guidance for future research on language model distillation as well as applications involving CoT. Codes are available at https://github.com/xinchen9/cot_distillation_ACL2024.
2022
Token and Head Adaptive Transformers for Efficient Natural Language Processing
Chonghan Lee
|
Md Fahim Faysal Khan
|
Rita Brugarolas Brufau
|
Ke Ding
|
Vijaykrishnan Narayanan
Proceedings of the 29th International Conference on Computational Linguistics
While pre-trained language models like BERT have achieved impressive results on various natural language processing tasks, deploying them on resource-restricted devices is challenging due to their intensive computational cost and memory footprint. Previous approaches mainly focused on training smaller versions of a BERT model with competitive accuracy under limited computational resources. In this paper, we extend Length Adaptive Transformer and propose to design Token and Head Adaptive Transformer, which can compress and accelerate various BERT-based models via simple fine-tuning. We train a transformer with a progressive token and head pruning scheme, eliminating a large number of redundant tokens and attention heads in the later layers. Then, we conduct a multi-objective evolutionary search with the overall number of floating point operations (FLOPs) as its efficiency constraint to find joint token and head pruning strategies that maximize accuracy and efficiency under various computational budgets. Empirical studies show that a large portion of tokens and attention heads could be pruned while achieving superior performance compared to the baseline BERT-based models and Length Adaptive Transformers in various downstream NLP tasks. MobileBERT trained with our joint token and head pruning scheme achieves a GLUE score of 83.0, which is 1.4 higher than Length Adaptive Transformer and 2.9 higher than the original model.
2018
CRF-LSTM Text Mining Method Unveiling the Pharmacological Mechanism of Off-target Side Effect of Anti-Multiple Myeloma Drugs
Kaiyin Zhou
|
Sheng Zhang
|
Xiangyu Meng
|
Qi Luo
|
Yuxing Wang
|
Ke Ding
|
Yukun Feng
|
Mo Chen
|
Kevin Cohen
|
Jingbo Xia
Proceedings of the BioNLP 2018 workshop
Sequence labeling of biomedical entities, e.g., side effects or phenotypes, was a long-term task in BioNLP and MedNLP communities. Thanks to effects made among these communities, adverse reaction NER has developed dramatically in recent years. As an illuminative application, to achieve knowledge discovery via the combination of the text mining result and bioinformatics idea shed lights on the pharmacological mechanism research.
Search
Co-authors
- Xin Chen 1
- Hanxian Huang 1
- Yanjun Gao 1
- Yi Wang 1
- Jishen Zhao 1
- show all...