We introduce a novel retrieval augmented generation approach that explicitly models causality and subjectivity. We use it to generate explanations for socioeconomic scenarios that capture beliefs of local populations. Through intrinsic and extrinsic evaluation, we show that our explanations, contextualized using causal and subjective information retrieved from local news sources, are rated higher than those produced by other large language models both in terms of mimicking the real population and the explanations quality. We also provide a discussion of the role subjectivity plays in evaluation of this natural language generation task.
When building models of human behavior, we often struggle to find data that capture important factors at the right level of granularity. In these cases, we must rely on expert knowledge to build models. To help partially automate the organization of expert knowledge for modeling, we combine natural language processing (NLP) and machine learning (ML) methods in a tool called the Grid. The Grid helps users organize textual knowledge into clickable cells aLong two dimensions using iterative, collaborative clustering. We conduct a user study to explore participants’ reactions to the Grid, as well as to investigate whether its clustering feature helps participants organize a corpus of expert knowledge. We find that participants using the Grid’s clustering feature appeared to work more efficiently than those without it, but written feedback about the clustering was critical. We conclude that the general design of the Grid was positively received and that some of the user challenges can likely be mitigated through the use of LLMs.
In this paper, we present a dataset of subjective views (beliefs and attitudes) held by individuals or groups. We analyze the usefulness of the dataset by training a neural classifier that identifies belief-containing sentences that are relevant for our broader project of interest—scientific modeling of complex systems. We also explore and discuss difficulties related to annotation of subjective views and propose ways of addressing them.
An existing domain taxonomy for normalizing content is often assumed when discussing approaches to information extraction, yet often in real-world scenarios there is none. When one does exist, as the information needs shift, it must be continually extended. This is a slow and tedious task, and one which does not scale well. Here we propose an interactive tool that allows a taxonomy to be built or extended rapidly and with a human in the loop to control precision. We apply insights from text summarization and information extraction to reduce the search space dramatically, then leverage modern pretrained language models to perform contextualized clustering of the remaining concepts to yield candidate nodes for the user to review. We show this allows a user to consider as many as 200 taxonomy concept candidates an hour, to quickly build or extend a taxonomy to better fit information needs.
Building causal models of complicated phenomena such as food insecurity is currently a slow and labor-intensive manual process. In this paper, we introduce an approach that builds executable probabilistic models from raw, free text. The proposed approach is implemented through three systems: Eidos, INDRA, and Delphi. Eidos is an open-domain machine reading system designed to extract causal relations from natural language. It is rule-based, allowing for rapid domain transfer, customizability, and interpretability. INDRA aggregates multiple sources of causal information and performs assembly to create a coherent knowledge base and assess its reliability. This assembled knowledge serves as the starting point for modeling. Delphi is a modeling framework that assembles quantified causal fragments and their contexts into executable probabilistic models that respect the semantics of the original text, and can be used to support decision making.