Recent studies have found that summaries generated by large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets. Therefore, we study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved. To this end, we use LLMs as both oracle summary generators for standard supervised fine-tuning and oracle summary evaluators for efficient contrastive learning that leverages the LLMs’ supervision signals. We conduct comprehensive experiments with source news articles and find that (1) summarization models trained under the LLM-as-reference setting achieve significant performance improvement in both LLM and human evaluations; (2) contrastive learning outperforms standard supervised fine-tuning under both low and high resource settings. Our experimental results also enable a meta-analysis of LLMs’ summary evaluation capacities under a challenging setting, showing that LLMs are not well-aligned with human evaluators. Particularly, our expert human evaluation reveals remaining nuanced performance gaps between LLMs and our fine-tuned models, which LLMs fail to capture. Thus, we call for further studies into both the potential and challenges of using LLMs in summarization model development.
Text simplification has emerged as an increasingly useful application of AI for bridging the communication gap in specialized fields such as medicine, where the lexicon is often dominated by technical jargon and complex constructs. Despite notable progress, methods in medical simplification sometimes result in the generated text having lower quality and diversity. In this work, we explore ways to further improve the readability of text simplification in the medical domain. We propose (1) a new unlikelihood loss that encourages generation of simpler terms and (2) a reranked beam search decoding method that optimizes for simplicity, which achieve better performance on readability metrics on three datasets. This study’s findings offer promising avenues for improving text simplification in the medical field.
Document-level information extraction (IE) tasks have recently begun to be revisited in earnest using the end-to-end neural network techniques that have been successful on their sentence-level IE counterparts. Evaluation of the approaches, however, has been limited in a number of dimensions. In particular, the precision/recall/F1 scores typically reported provide few insights on the range of errors the models make. We build on the work of Kummerfeld and Klein (2013) to propose a transformation-based framework for automating error analysis in document-level event and (N-ary) relation extraction. We employ our framework to compare two state-of-the-art document-level template-filling approaches on datasets from three domains; and then, to gauge progress in IE since its inception 30 years ago, vs. four systems from the MUC-4 (1992) evaluation.