Kellie Hill


2024

pdf bib
Ontologically Faithful Generation of Non-Player Character Dialogues
Nathaniel Weir | Ryan Thomas | Randolph d’Amore | Kellie Hill | Benjamin Van Durme | Harsh Jhamtani
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

We introduce a language generation dataset grounded in a popular video game. KNUDGE (**KN**owledge Constrained **U**ser-NPC **D**ialogue **GE**neration) requires models to produce trees of dialogue between video game characters that accurately reflect quest and entity specifications stated in natural language. KNUDGE is constructed from side quest dialogues drawn directly from game data of Obsidian Entertainment’s _The Outer Worlds_, leading to real-world complexities in generation: (1) utterances must remain faithful to the game lore, including character personas and backstories; (2) a dialogue must accurately reveal new quest details to the human player; and (3) dialogues are large trees as opposed to linear chains of utterances. We report results for a set of neural generation models using supervised and in-context learning techniques; we find competent performance but room for future work addressing the challenges of creating realistic, game-quality dialogues.

2020

pdf bib
Task-Oriented Dialogue as Dataflow Synthesis
Jacob Andreas | John Bufe | David Burkett | Charles Chen | Josh Clausman | Jean Crawford | Kate Crim | Jordan DeLoach | Leah Dorner | Jason Eisner | Hao Fang | Alan Guo | David Hall | Kristin Hayes | Kellie Hill | Diana Ho | Wendy Iwaszuk | Smriti Jha | Dan Klein | Jayant Krishnamurthy | Theo Lanman | Percy Liang | Christopher H. Lin | Ilya Lintsbakh | Andy McGovern | Aleksandr Nisnevich | Adam Pauls | Dmitrij Petters | Brent Read | Dan Roth | Subhro Roy | Jesse Rusak | Beth Short | Div Slomin | Ben Snyder | Stephon Striplin | Yu Su | Zachary Tellman | Sam Thomson | Andrei Vorobev | Izabela Witoszko | Jason Wolfe | Abby Wray | Yuchen Zhang | Alexander Zotov
Transactions of the Association for Computational Linguistics, Volume 8

We describe an approach to task-oriented dialogue in which dialogue state is represented as a dataflow graph. A dialogue agent maps each user utterance to a program that extends this graph. Programs include metacomputation operators for reference and revision that reuse dataflow fragments from previous turns. Our graph-based state enables the expression and manipulation of complex user intents, and explicit metacomputation makes these intents easier for learned models to predict. We introduce a new dataset, SMCalFlow, featuring complex dialogues about events, weather, places, and people. Experiments show that dataflow graphs and metacomputation substantially improve representability and predictability in these natural dialogues. Additional experiments on the MultiWOZ dataset show that our dataflow representation enables an otherwise off-the-shelf sequence-to-sequence model to match the best existing task-specific state tracking model. The SMCalFlow dataset, code for replicating experiments, and a public leaderboard are available at https://www.microsoft.com/en-us/research/project/dataflow-based-dialogue-semantic-machines.