Kenji Kawaguchi


2023

pdf bib
MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter
Zhiyuan Liu | Sihang Li | Yanchen Luo | Hao Fei | Yixin Cao | Kenji Kawaguchi | Xiang Wang | Tat-Seng Chua
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Language Models (LMs) have demonstrated impressive molecule understanding ability on various 1D text-related tasks. However, they inherently lack 2D graph perception — a critical ability of human professionals in comprehending molecules’ topological structures. To bridge this gap, we propose MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter. MolCA enables an LM (i.e., Galactica) to understand both text- and graph-based molecular contents via the cross-modal projector. Specifically, the cross-modal projector is implemented as a Q-Former to connect a graph encoder’s representation space and an LM’s text space. Further, MolCA employs a uni-modal adapter (i.e., LoRA) for the LM’s efficient adaptation to downstream tasks. Unlike previous studies that couple an LM with a graph encoder via cross-modal contrastive learning, MolCA retains the LM’s ability of open-ended text generation and augments it with 2D graph information. To showcase its effectiveness, we extensively benchmark MolCA on tasks of molecule captioning, IUPAC name prediction, and molecule-text retrieval, on which MolCA significantly outperforms the baselines.

pdf bib
Automatic Model Selection with Large Language Models for Reasoning
James Zhao | Yuxi Xie | Kenji Kawaguchi | Junxian He | Michael Xie
Findings of the Association for Computational Linguistics: EMNLP 2023

Chain-of-Thought (CoT) and Program-Aided Language Models (PAL) represent two distinct reasoning methods, each with its own strengths. CoT employs natural language, offering flexibility and interpretability, while PAL utilizes programming language, yielding more structured and rigorous logic. We introduce a model selection method to combine the best of both worlds by employing a large language model (LLM) to dynamically select between them. Our theoretical analysis underscores the feasibility of this method, which is further corroborated by empirical results. Our proposed method demonstrates significant performance improvements across eight reasoning datasets with Codex, ChatGPT, and GPT-4. Additionally, our method is complementary to self-consistency; when integrated, it can further enhance performance while significantly reducing computation costs. Moreover, we achieve new state-of-the-art results on GSM8K and SVAMP, with respective accuracies of 96.8% and 93.7%.