Keshav Kolluru


pdf bib
Alignment-Augmented Consistent Translation for Multilingual Open Information Extraction
Keshav Kolluru | Muqeeth Mohammed | Shubham Mittal | Soumen Chakrabarti | Mausam .
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Progress with supervised Open Information Extraction (OpenIE) has been primarily limited to English due to the scarcity of training data in other languages. In this paper, we explore techniques to automatically convert English text for training OpenIE systems in other languages. We introduce the Alignment-Augmented Constrained Translation (AACTrans) model to translate English sentences and their corresponding extractions consistently with each other — with no changes to vocabulary or semantic meaning which may result from independent translations. Using the data generated with AACTrans, we train a novel two-stage generative OpenIE model, which we call Gen2OIE, that outputs for each sentence: 1) relations in the first stage and 2) all extractions containing the relation in the second stage. Gen2OIE increases relation coverage using a training data transformation technique that is generalizable to multiple languages, in contrast to existing models that use an English-specific training loss. Evaluations on 5 languages — Spanish, Portuguese, Chinese, Hindi and Telugu — show that the Gen2OIE with AACTrans data outperforms prior systems by a margin of 6-25% in F1.


pdf bib
OpenIE6: Iterative Grid Labeling and Coordination Analysis for Open Information Extraction
Keshav Kolluru | Vaibhav Adlakha | Samarth Aggarwal | Mausam | Soumen Chakrabarti
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

A recent state-of-the-art neural open information extraction (OpenIE) system generates extractions iteratively, requiring repeated encoding of partial outputs. This comes at a significant computational cost. On the other hand,sequence labeling approaches for OpenIE are much faster, but worse in extraction quality. In this paper, we bridge this trade-off by presenting an iterative labeling-based system that establishes a new state of the art for OpenIE, while extracting 10x faster. This is achieved through a novel Iterative Grid Labeling (IGL) architecture, which treats OpenIE as a 2-D grid labeling task. We improve its performance further by applying coverage (soft) constraints on the grid at training time. Moreover, on observing that the best OpenIE systems falter at handling coordination structures, our OpenIE system also incorporates a new coordination analyzer built with the same IGL architecture. This IGL based coordination analyzer helps our OpenIE system handle complicated coordination structures, while also establishing a new state of the art on the task of coordination analysis, with a 12.3 pts improvement in F1 over previous analyzers. Our OpenIE system - OpenIE6 - beats the previous systems by as much as 4 pts in F1, while being much faster.

pdf bib
IMoJIE: Iterative Memory-Based Joint Open Information Extraction
Keshav Kolluru | Samarth Aggarwal | Vipul Rathore | Mausam | Soumen Chakrabarti
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

While traditional systems for Open Information Extraction were statistical and rule-based, recently neural models have been introduced for the task. Our work builds upon CopyAttention, a sequence generation OpenIE model (Cui et. al. 18). Our analysis reveals that CopyAttention produces a constant number of extractions per sentence, and its extracted tuples often express redundant information. We present IMoJIE, an extension to CopyAttention, which produces the next extraction conditioned on all previously extracted tuples. This approach overcomes both shortcomings of CopyAttention, resulting in a variable number of diverse extractions per sentence. We train IMoJIE on training data bootstrapped from extractions of several non-neural systems, which have been automatically filtered to reduce redundancy and noise. IMoJIE outperforms CopyAttention by about 18 F1 pts, and a BERT-based strong baseline by 2 F1 pts, establishing a new state of the art for the task.

pdf bib
Why and when should you pool? Analyzing Pooling in Recurrent Architectures
Pratyush Maini | Keshav Kolluru | Danish Pruthi | Mausam
Findings of the Association for Computational Linguistics: EMNLP 2020

Pooling-based recurrent neural architectures consistently outperform their counterparts without pooling on sequence classification tasks. However, the reasons for their enhanced performance are largely unexamined. In this work, we examine three commonly used pooling techniques (mean-pooling, max-pooling, and attention, and propose *max-attention*, a novel variant that captures interactions among predictive tokens in a sentence. Using novel experiments, we demonstrate that pooling architectures substantially differ from their non-pooling equivalents in their learning ability and positional biases: (i) pooling facilitates better gradient flow than BiLSTMs in initial training epochs, and (ii) BiLSTMs are biased towards tokens at the beginning and end of the input, whereas pooling alleviates this bias. Consequently, we find that pooling yields large gains in low resource scenarios, and instances when salient words lie towards the middle of the input. Across several text classification tasks, we find max-attention to frequently outperform other pooling techniques.