Kevin Chu


2023

pdf bib
Catching Misdiagnosed Limb Fractures in the Emergency Department Using Cross-institution Transfer Learning
Filip Rusak | Bevan Koopman | Nathan J. Brown | Kevin Chu | Jinghui Liu | Anthony Nguyen
Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association

We investigated the development of a Machine Learning (ML)-based classifier to identify abnormalities in radiology reports from Emergency Departments (EDs) that can help automate the radiology report reconciliation process. Often, radiology reports become available to the ED only after the patient has been treated and discharged, following ED clinician interpretation of the X-ray. However, occasionally ED clinicians misdiagnose or fail to detect subtle abnormalities on X-rays, so they conduct a manual radiology report reconciliation process as a safety net. Previous studies addressed this problem of automated reconciliation using ML-based classification solutions that require data samples from the target institution that is heavily based on feature engineering, implying lower transferability between hospitals. In this paper, we investigated the benefits of using pre-trained BERT models for abnormality classification in a cross-institutional setting where data for fine-tuning was unavailable from the target institution. We also examined how the inclusion of synthetically generated radiology reports from ChatGPT affected the performance of the BERT models. Our findings suggest that BERT-like models outperform previously proposed ML-based methods in cross-institutional scenarios, and that adding ChatGPT-generated labelled radiology reports can improve the classifier’s performance by reducing the number of misdiagnosed discharged patients.