Citations are a fundamental and indispensable part of research writing. They provide support and lend credibility to research findings. Recent GPT-fueled interest in large language models (LLMs) has shone a spotlight on the capabilities and limitations of these models when generating relevant citations for a document. Recent work has focused largely on title and author accuracy. We underline this effort and expand on it with a preliminary exploration in relevance of model-recommended citations. We define three citation-recommendation tasks. We also collect and annotate a dataset of model-recommended citations for those tasks. We find that GPT-4 largely outperforms earlier models on both author and title accuracy in two markedly different CS venues, but may not recommend references that are more relevant than those recommended by the earlier models. The two venues we compare are CHI and EMNLP. All models appear to perform better at recommending EMNLP papers than CHI papers.
Transfer learning (TL) in natural language processing (NLP) has seen a surge of interest in recent years, as pre-trained models have shown an impressive ability to transfer to novel tasks. Three main strategies have emerged for making use of multiple supervised datasets during fine-tuning: training on an intermediate task before training on the target task (STILTs), using multi-task learning (MTL) to train jointly on a supplementary task and the target task (pairwise MTL), or simply using MTL to train jointly on all available datasets (MTL-ALL). In this work, we compare all three TL methods in a comprehensive analysis on the GLUE dataset suite. We find that there is a simple heuristic for when to use one of these techniques over the other: pairwise MTL is better than STILTs when the target task has fewer instances than the supporting task and vice versa. We show that this holds true in more than 92% of applicable cases on the GLUE dataset and validate this hypothesis with experiments varying dataset size. The simplicity and effectiveness of this heuristic is surprising and warrants additional exploration by the TL community. Furthermore, we find that MTL-ALL is worse than the pairwise methods in almost every case. We hope this study will aid others as they choose between TL methods for NLP tasks.
Text classification is a significant branch of natural language processing, and has many applications including document classification and sentiment analysis. Unsurprisingly, those who do text classification are concerned with the run-time of their algorithms, many of which depend on the size of the corpus’ vocabulary due to their bag-of-words representation. Although many studies have examined the effect of preprocessing techniques on vocabulary size and accuracy, none have examined how these methods affect a model’s run-time. To fill this gap, we provide a comprehensive study that examines how preprocessing techniques affect the vocabulary size, model performance, and model run-time, evaluating ten techniques over four models and two datasets. We show that some individual methods can reduce run-time with no loss of accuracy, while some combinations of methods can trade 2-5% of the accuracy for up to a 65% reduction of run-time. Furthermore, some combinations of preprocessing techniques can even provide a 15% reduction in run-time while simultaneously improving model accuracy.
Understanding and identifying humor has been increasingly popular, as seen by the number of datasets created to study humor. However, one area of humor research, humor generation, has remained a difficult task, with machine generated jokes failing to match human-created humor. As many humor prediction datasets claim to aid in generative tasks, we examine whether these claims are true. We focus our experiments on the most popular dataset, included in the 2020 SemEval’s Task 7, and teach our model to take normal text and “translate” it into humorous text. We evaluate our model compared to humorous human generated headlines, finding that our model is preferred equally in A/B testing with the human edited versions, a strong success for humor generation, and is preferred over an intelligent random baseline 72% of the time. We also show that our model is assumed to be human written comparable with that of the human edited headlines and is significantly better than random, indicating that this dataset does indeed provide potential for future humor generation systems.
Humor is a complicated language phenomenon that depends upon many factors, including topic, date, and recipient. Because of this variation, it can be hard to determine what exactly makes a joke humorous, leading to difficulties in joke identification and related tasks. Furthermore, current humor datasets are lacking in both joke variety and size, with almost all current datasets having less than 100k jokes. In order to alleviate this issue we compile a collection of over 550,000 jokes posted over an 11 year period on the Reddit r/Jokes subreddit (an online forum), providing a large scale humor dataset that can easily be used for a myriad of tasks. This dataset also provides quantitative metrics for the level of humor in each joke, as determined by subreddit user feedback. We explore this dataset through the years, examining basic statistics, most mentioned entities, and sentiment proportions. We also introduce this dataset as a task for future work, where models learn to predict the level of humor in a joke. On that task we provide strong state-of-the-art baseline models and show room for future improvement. We hope that this dataset will not only help those researching computational humor, but also help social scientists who seek to understand popular culture through humor.
Predicting reading time has been a subject of much previous work, focusing on how different words affect human processing, measured by reading time. However, previous work has dealt with a limited number of participants as well as word level only predictions (i.e. predicting the time to read a single word). We seek to extend these works by examining whether or not document level predictions are effective, given additional information such as subject matter, font characteristics, and readability metrics. We perform a novel experiment to examine how different features of text contribute to the time it takes to read, distributing and collecting data from over a thousand participants. We then employ a large number of machine learning methods to predict a user’s reading time. We find that despite extensive research showing that word level reading time can be most effectively predicted by neural networks, larger scale text can be easily and most accurately predicted by one factor, the number of words.
Topic models are typically evaluated with respect to the global topic distributions that they generate, using metrics such as coherence, but without regard to local (token-level) topic assignments. Token-level assignments are important for downstream tasks such as classification. Even recent models, which aim to improve the quality of these token-level topic assignments, have been evaluated only with respect to global metrics. We propose a task designed to elicit human judgments of token-level topic assignments. We use a variety of topic model types and parameters and discover that global metrics agree poorly with human assignments. Since human evaluation is expensive we propose a variety of automated metrics to evaluate topic models at a local level. Finally, we correlate our proposed metrics with human judgments from the task on several datasets. We show that an evaluation based on the percent of topic switches correlates most strongly with human judgment of local topic quality. We suggest that this new metric, which we call consistency, be adopted alongside global metrics such as topic coherence when evaluating new topic models.
To address the lack of comparative evaluation of Human-in-the-Loop Topic Modeling (HLTM) systems, we implement and evaluate three contrasting HLTM modeling approaches using simulation experiments. These approaches extend previously proposed frameworks, including constraints and informed prior-based methods. Users should have a sense of control in HLTM systems, so we propose a control metric to measure whether refinement operations’ results match users’ expectations. Informed prior-based methods provide better control than constraints, but constraints yield higher quality topics.
Cross-referencing, which links passages of text to other related passages, can be a valuable study aid for facilitating comprehension of a text. However, cross-referencing requires first, a comprehensive thematic knowledge of the entire corpus, and second, a focused search through the corpus specifically to find such useful connections. Due to this, cross-reference resources are prohibitively expensive and exist only for the most well-studied texts (e.g. religious texts). We develop a topic-based system for automatically producing candidate cross-references which can be easily verified by human annotators. Our system utilizes fine-grained topic modeling with thousands of highly nuanced and specific topics to identify verse pairs which are topically related. We demonstrate that our system can be cost effective compared to having annotators acquire the expertise necessary to produce cross-reference resources unaided.
Much previous work has been done in attempting to identify humor in text. In this paper we extend that capability by proposing a new task: assessing whether or not a joke is humorous. We present a novel way of approaching this problem by building a model that learns to identify humorous jokes based on ratings gleaned from Reddit pages, consisting of almost 16,000 labeled instances. Using these ratings to determine the level of humor, we then employ a Transformer architecture for its advantages in learning from sentence context. We demonstrate the effectiveness of this approach and show results that are comparable to human performance. We further demonstrate our model’s increased capabilities on humor identification problems, such as the previously created datasets for short jokes and puns. These experiments show that this method outperforms all previous work done on these tasks, with an F-measure of 93.1% for the Puns dataset and 98.6% on the Short Jokes dataset.
Annotated corpora enable supervised machine learning and data analysis. To reduce the cost of manual annotation, tasks are often assigned to internet workers whose judgments are reconciled by crowdsourcing models. We approach the problem of crowdsourcing using a framework for learning from rich prior knowledge, and we identify a family of crowdsourcing models with the novel ability to combine annotations with differing structures: e.g., document labels and word labels. Annotator judgments are given in the form of the predicted expected value of measurement functions computed over annotations and the data, unifying annotation models. Our model, a specific instance of this framework, compares favorably with previous work. Furthermore, it enables active sample selection, jointly selecting annotator, data item, and annotation structure to reduce annotation effort.
We propose Labeled Anchors, an interactive and supervised topic model based on the anchor words algorithm (Arora et al., 2013). Labeled Anchors is similar to Supervised Anchors (Nguyen et al., 2014) in that it extends the vector-space representation of words to include document labels. However, our formulation also admits a classifier which requires no training beyond inferring topics, which means our approach is also fast enough to be interactive. We run a small user study that demonstrates that untrained users can interactively update topics in order to improve classification accuracy.
Interactive topic models are powerful tools for those seeking to understand large collections of text. However, existing sampling-based interactive topic modeling approaches scale poorly to large data sets. Anchor methods, which use a single word to uniquely identify a topic, offer the speed needed for interactive work but lack both a mechanism to inject prior knowledge and lack the intuitive semantics needed for user-facing applications. We propose combinations of words as anchors, going beyond existing single word anchor algorithms—an approach we call “Tandem Anchors”. We begin with a synthetic investigation of this approach then apply the approach to interactive topic modeling in a user study and compare it to interactive and non-interactive approaches. Tandem anchors are faster and more intuitive than existing interactive approaches.
In modern text annotation projects, crowdsourced annotations are often aggregated using item response models or by majority vote. Recently, item response models enhanced with generative data models have been shown to yield substantial benefits over those with conditional or no data models. However, suitable generative data models do not exist for many tasks, such as semantic labeling tasks. When no generative data model exists, we demonstrate that similar benefits may be derived by conditionally modeling documents that have been previously embedded in a semantic space using recent work in vector space models. We use this approach to show state-of-the-art results on a variety of semantic annotation aggregation tasks.
Probabilistic models are a useful means for analyzing large text corpora. Integrating such models with human interaction enables many new use cases. However, adding human interaction to probabilistic models requires inference algorithms which are both fast and accurate. We explore the use of Iterated Conditional Modes as a fast alternative to Gibbs sampling or variational EM. We demonstrate superior performance both in run time and model quality on three different models of text including a DP Mixture of Multinomials for web search result clustering, the Interactive Topic Model, and M OM R ESP , a multinomial crowdsourcing model.
Data annotation in modern practice often involves multiple, imperfect human annotators. Multiple annotations can be used to infer estimates of the ground-truth labels and to estimate individual annotator error characteristics (or reliability). We introduce MomResp, a model that incorporates information from both natural data clusters as well as annotations from multiple annotators to infer ground-truth labels and annotator reliability for the document classification task. We implement this model and show dramatic improvements over majority vote in situations where both annotations are scarce and annotation quality is low as well as in situations where annotators disagree consistently. Because MomResp predictions are subject to label switching, we introduce a solution that finds nearly optimal predicted class reassignments in a variety of settings using only information available to the model at inference time. Although MomResp does not perform well in annotation-rich situations, we show evidence suggesting how this shortcoming may be overcome in future work.
The task of corpus-dictionary linkage (CDL) is to annotate each word in a corpus with a link to an appropriate dictionary entry that documents the sense and usage of the word. Corpus-dictionary linked resources include concordances, dictionaries with word usage examples, and corpora annotated with lemmas or word-senses. Such CDL resources are essential in learning a language and in linguistic research, translation, and philology. Lemmatization is a common approximation to automating corpus-dictionary linkage, where lemmas are treated as dictionary entry headwords. We intend to use data-driven lemmatization models to provide machine assistance to human annotators in the form of pre-annotations, and thereby reduce the costs of CDL annotation. In this work we adapt the discriminative string transducer DirecTL+ to perform lemmatization for classical Syriac, a low-resource language. We compare the accuracy of DirecTL+ with the Morfette discriminative lemmatizer. DirecTL+ achieves 96.92% overall accuracy but only by a margin of 0.86% over Morfette at the cost of a longer time to train the model. Error analysis on the models provides guidance on how to apply these models in a machine assistance setting for corpus-dictionary linkage.
We describe an under-studied problem in language resource management: that of providing automatic assistance to annotators working in exploratory settings. When no satisfactory tagset already exists, such as in under-resourced or undocumented languages, it must be developed iteratively while annotating data. This process naturally gives rise to a sequence of datasets, each annotated differently. We argue that this problem is best regarded as a transfer learning problem with multiple source tasks. Using part-of-speech tagging data with simulated exploratory tagsets, we demonstrate that even simple transfer learning techniques can significantly improve the quality of pre-annotations in an exploratory annotation.
Manual annotation of large textual corpora can be cost-prohibitive, especially for rare and under-resourced languages. One potential solution is pre-annotation: asking human annotators to correct sentences that have already been annotated, usually by a machine. Another potential solution is correction propagation: using annotator corrections to bad pre-annotations to dynamically improve to the remaining pre-annotations within the current sentence. The research presented in this paper employs a controlled user study to discover under what conditions these two machine-assisted annotation techniques are effective in increasing annotator speed and accuracy and thereby reducing the cost for the task of morphologically annotating texts written in classical Syriac. A preliminary analysis of the data indicates that pre-annotations improve annotator accuracy when they are at least 60% accurate, and annotator speed when they are at least 80% accurate. This research constitutes the first systematic evaluation of pre-annotation and correction propagation together in a controlled user study.
We introduce CCASH (Cost-Conscious Annotation Supervised by Humans), an extensible web application framework for cost-efficient annotation. CCASH provides a framework in which cost-efficient annotation methods such as Active Learning can be explored via user studies and afterwards applied to large annotation projects. CCASHs architecture is described as well as the technologies that it is built on. CCASH allows custom annotation tasks to be built from a growing set of useful annotation widgets. It also allows annotation methods (such as AL) to be implemented in any language. Being a web application framework, CCASH offers secure centralized data and annotation storage and facilitates collaboration among multiple annotations. By default it records timing information about each annotation and provides facilities for recording custom statistics. The CCASH framework has been used to evaluate a novel annotation strategy presented in a concurrently published paper, and will be used in the future to annotate a large Syriac corpus.
Expert human input can contribute in various ways to facilitate automatic annotation of natural language text. For example, a part-of-speech tagger can be trained on labeled input provided offline by experts. In addition, expert input can be solicited by way of active learning to make the most of annotator expertise. However, hiring individuals to perform manual annotation is costly both in terms of money and time. This paper reports on a user study that was performed to determine the degree of effect that a part-of-speech dictionary has on a group of subjects performing the annotation task. The user study was conducted using a modular, web-based interface created specifically for text annotation tasks. The user study found that for both native and non-native English speakers a dictionary with greater than 60% coverage was effective at reducing annotation time and increasing annotator accuracy. On the basis of this study, we predict that using a part-of-speech tag dictionary with coverage greater than 60% can reduce the cost of annotation in terms of both time and money.
Fixed, limited budgets often constrain the amount of expert annotation that can go into the construction of annotated corpora. Estimating the cost of annotation is the first step toward using annotation resources wisely. We present here a study of the cost of annotation. This study includes the participation of annotators at various skill levels and with varying backgrounds. Conducted over the web, the study consists of tests that simulate machine-assisted pre-annotation, requiring correction by the annotator rather than annotation from scratch. The study also includes tests representative of an annotation scenario involving Active Learning as it progresses from a naïve model to a knowledgeable model; in particular, annotators encounter pre-annotation of varying degrees of accuracy. The annotation interface lists tags considered likely by the annotation model in preference to other tags. We present the experimental parameters of the study and report both descriptive and inferential statistics on the results of the study. We conclude with a model for estimating the hourly cost of annotation for annotators of various skill levels. We also present models for two granularities of annotation: sentence at a time and word at a time.