Kevin Yang


2022

pdf bib
Automated Crossword Solving
Eric Wallace | Nicholas Tomlin | Albert Xu | Kevin Yang | Eshaan Pathak | Matthew Ginsberg | Dan Klein
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present the Berkeley Crossword Solver, a state-of-the-art approach for automatically solving crossword puzzles. Our system works by generating answer candidates for each crossword clue using neural question answering models and then combines loopy belief propagation with local search to find full puzzle solutions. Compared to existing approaches, our system improves exact puzzle accuracy from 57% to 82% on crosswords from The New York Times and obtains 99.9% letter accuracy on themeless puzzles. Our system also won first place at the top human crossword tournament, which marks the first time that a computer program has surpassed human performance at this event. To facilitate research on question answering and crossword solving, we analyze our system’s remaining errors and release a dataset of over six million question-answer pairs.

pdf bib
Addressing Resource and Privacy Constraints in Semantic Parsing Through Data Augmentation
Kevin Yang | Olivia Deng | Charles Chen | Richard Shin | Subhro Roy | Benjamin Van Durme
Findings of the Association for Computational Linguistics: ACL 2022

We introduce a novel setup for low-resource task-oriented semantic parsing which incorporates several constraints that may arise in real-world scenarios: (1) lack of similar datasets/models from a related domain, (2) inability to sample useful logical forms directly from a grammar, and (3) privacy requirements for unlabeled natural utterances. Our goal is to improve a low-resource semantic parser using utterances collected through user interactions. In this highly challenging but realistic setting, we investigate data augmentation approaches involving generating a set of structured canonical utterances corresponding to logical forms, before simulating corresponding natural language and filtering the resulting pairs. We find that such approaches are effective despite our restrictive setup: in a low-resource setting on the complex SMCalFlow calendaring dataset (Andreas et al. 2020), we observe 33% relative improvement over a non-data-augmented baseline in top-1 match.

2021

pdf bib
FUDGE: Controlled Text Generation With Future Discriminators
Kevin Yang | Dan Klein
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose Future Discriminators for Generation (FUDGE), a flexible and modular method for controlled text generation. Given a pre-existing model G for generating text from a distribution of interest, FUDGE enables conditioning on a desired attribute a (for example, formality) while requiring access only to G’s output logits. FUDGE learns an attribute predictor operating on a partial sequence, and uses this predictor’s outputs to adjust G’s original probabilities. We show that FUDGE models terms corresponding to a Bayesian decomposition of the conditional distribution of G given attribute a. Moreover, FUDGE can easily compose predictors for multiple desired attributes. We evaluate FUDGE on three tasks — couplet completion in poetry, topic control in language generation, and formality change in machine translation — and observe gains in all three tasks.

2020

pdf bib
A Streaming Approach For Efficient Batched Beam Search
Kevin Yang | Violet Yao | John DeNero | Dan Klein
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We propose an efficient batching strategy for variable-length decoding on GPU architectures. During decoding, when candidates terminate or are pruned according to heuristics, our streaming approach periodically “refills” the batch before proceeding with a selected subset of candidates. We apply our method to variable-width beam search on a state-of-the-art machine translation model. Our method decreases runtime by up to 71% compared to a fixed-width beam search baseline and 17% compared to a variable-width baseline, while matching baselines’ BLEU. Finally, experiments show that our method can speed up decoding in other domains, such as semantic and syntactic parsing.