Kexin Huang


2024

pdf bib
ESC-Eval: Evaluating Emotion Support Conversations in Large Language Models
Haiquan Zhao | Lingyu Li | Shisong Chen | Shuqi Kong | Jiaan Wang | Kexin Huang | Tianle Gu | Yixu Wang | Jian Wang | Liang Dandan | Zhixu Li | Yan Teng | Yanghua Xiao | Yingchun Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Emotion Support Conversation (ESC) is a crucial application, which aims to reduce human stress, offer emotional guidance, and ultimately enhance human mental and physical well-being. With the advancement of Large Language Models (LLMs), many researchers have employed LLMs as the ESC models. However, the evaluation of these LLM-based ESCs remains uncertain. In detail, we first re-organize 2,801 role-playing cards from seven existing datasets to define the roles of the role-playing agent. Second, we train a specific role-playing model called ESC-Role which behaves more like a confused person than GPT-4. Third, through ESC-Role and organized role cards, we systematically conduct experiments using 14 LLMs as the ESC models, including general AI-assistant LLMs (e.g., ChatGPT) and ESC-oriented LLMs (e.g., ExTES-Llama). We conduct comprehensive human annotations on interactive multi-turn dialogues of different ESC models. The results show that ESC-oriented LLMs exhibit superior ESC abilities compared to general AI-assistant LLMs, but there is still a gap behind human performance. Moreover, to automate the scoring process for future ESC models, we developed ESC-RANK, which trained on the annotated data, achieving a scoring performance surpassing 35 points of GPT-4.

pdf bib
Flames: Benchmarking Value Alignment of LLMs in Chinese
Kexin Huang | Xiangyang Liu | Qianyu Guo | Tianxiang Sun | Jiawei Sun | Yaru Wang | Zeyang Zhou | Yixu Wang | Yan Teng | Xipeng Qiu | Yingchun Wang | Dahua Lin
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The widespread adoption of large language models (LLMs) across various regions underscores the urgent need to evaluate their alignment with human values. Current benchmarks, however, fall short of effectively uncovering safety vulnerabilities in LLMs. Despite numerous models achieving high scores and ‘topping the chart’ in these evaluations, there is still a significant gap in LLMs’ deeper alignment with human values and achieving genuine harmlessness. To this end, this paper proposes a value alignment benchmark named Flames, which encompasses both common harmlessness principles and a unique morality dimension that integrates specific Chinese values such as harmony. Accordingly, we carefully design adversarial prompts that incorporate complex scenarios and jailbreaking methods, mostly with implicit malice. By prompting 17 mainstream LLMs, we obtain model responses and rigorously annotate them for detailed evaluation. Our findings indicate that all the evaluated LLMs demonstrate relatively poor performance on Flames, particularly in the safety and fairness dimensions. We also develop a lightweight specified scorer capable of scoring LLMs across multiple dimensions to efficiently evaluate new models on the benchmark. The complexity of Flames has far exceeded existing benchmarks, setting a new challenge for contemporary LLMs and highlighting the need for further alignment of LLMs. Our benchmark is publicly available at https://github.com/AIFlames/Flames.

pdf bib
Fake Alignment: Are LLMs Really Aligned Well?
Yixu Wang | Yan Teng | Kexin Huang | Chengqi Lyu | Songyang Zhang | Wenwei Zhang | Xingjun Ma | Yu-Gang Jiang | Yu Qiao | Yingchun Wang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The growing awareness of safety concerns in large language models (LLMs) has sparked considerable interest in the evaluation of safety. This study investigates an under-explored issue about the evaluation of LLMs, namely the substantial discrepancy in performance between multiple-choice questions and open-ended questions. Inspired by research on jailbreak attack patterns, we argue this is caused by mismatched generalization. That is, LLM only remembers the answer style for open-ended safety questions, which makes it unable to solve other forms of safety tests. We refer to this phenomenon as fake alignment and construct a comparative benchmark to empirically verify its existence in LLMs. We introduce a Fake alIgNment Evaluation (FINE) framework and two novel metrics——Consistency Score (CS) and Consistent Safety Score (CSS), which jointly assess two complementary forms of evaluation to quantify fake alignment and obtain corrected performance estimation. Applying FINE to 14 widely-used LLMs reveals several models with purported safety are poorly aligned in practice. Subsequently, we found that multiple-choice format data can also be used as high-quality contrast distillation-based fine-tuning data, which can strongly improve the alignment consistency of LLMs with minimal fine-tuning overhead. For data and code, see https://github.com/AIFlames/Fake-Alignment.

2020

pdf bib
Clinical XLNet: Modeling Sequential Clinical Notes and Predicting Prolonged Mechanical Ventilation
Kexin Huang | Abhishek Singh | Sitong Chen | Edward Moseley | Chih-Ying Deng | Naomi George | Charolotta Lindvall
Proceedings of the 3rd Clinical Natural Language Processing Workshop

Clinical notes contain rich information, which is relatively unexploited in predictive modeling compared to structured data. In this work, we developed a new clinical text representation Clinical XLNet that leverages the temporal information of the sequence of the notes. We evaluated our models on prolonged mechanical ventilation prediction problem and our experiments demonstrated that Clinical XLNet outperforms the best baselines consistently. The models and scripts are made publicly available.