Keyang Ding


2024

pdf bib
In-Context Example Retrieval from Multi-Perspectives for Few-Shot Aspect-Based Sentiment Analysis
Qianlong Wang | Hongling Xu | Keyang Ding | Bin Liang | Ruifeng Xu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In this paper, we focus on few-shot aspect-based sentiment analysis (ABSA) and try to solve it with in-context learning (ICL) paradigm. However, the effectiveness of ICL is highly affected by retrieved in-context examples. Previous works generally leverage the semantic similarity between the candidate examples and test input to retrieve examples. However, they may yield sub-optimal results for this task. This is because considering only the overall semantic perspective may leave some useful examples, which have syntactic structural relevance to the test input or share identical sentiments and similar aspects to one unretrievable. To address this shortcoming, we advocate retrieving in-context examples for few-shot ABSA by simultaneously considering three perspectives, overall semantics, syntactic structure relevance, and aspect-sentiment semantics. To achieve this, we construct positive and negative pairs from these three perspectives and train the demonstration retriever using contrastive learning. Experimental results on four ABSA datasets show that our retrieval framework can significantly outperform baselines across the board. Moreover, to understand factors influencing ICL performance on few-shot ABSA, we conduct extensive analysis in various scenarios, which can inspire and advance future research.

2023

pdf bib
Reducing Spurious Correlations in Aspect-based Sentiment Analysis with Explanation from Large Language Models
Qianlong Wang | Keyang Ding | Bin Liang | Min Yang | Ruifeng Xu
Findings of the Association for Computational Linguistics: EMNLP 2023

Recently, aspect-based sentiment analysis (ABSA) models have yielded promising results. However, they are susceptible to learning spurious correlations between certain words of the input text and output labels while modeling the sentiment feature of the aspect. This spurious correlation will potentially undermine the performance of ABSA models. One direct solution for this problem is to make the model see and learn an explanation of sentiment expression rather than certain words. Motivated by this, we exploit explanations for the sentiment polarity of each aspect from large language models (LLMs) to reduce spurious correlations in ABSA. First, we formulate a prompt template that wraps the sentence, an aspect, and the sentiment label. This template is utilized to prompt LLMs to generate an appropriate explanation that states the sentiment cause. Then, we propose two straightforward yet effective methods to leverage the explanation for preventing the learning of spurious correlations. We conducted extensive comparative experiments on five datasets by integrating them with some representative ABSA models. Results show that our methods can achieve performance gains and enhance the performance and generalization ability of ABSA models.

2021

pdf bib
Engage the Public: Poll Question Generation for Social Media Posts
Zexin Lu | Keyang Ding | Yuji Zhang | Jing Li | Baolin Peng | Lemao Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

This paper presents a novel task to generate poll questions for social media posts. It offers an easy way to hear the voice from the public and learn from their feelings to important social topics. While most related work tackles formal languages (e.g., exam papers), we generate poll questions for short and colloquial social media messages exhibiting severe data sparsity. To deal with that, we propose to encode user comments and discover latent topics therein as contexts. They are then incorporated into a sequence-to-sequence (S2S) architecture for question generation and its extension with dual decoders to additionally yield poll choices (answers). For experiments, we collect a large-scale Chinese dataset from Sina Weibo containing over 20K polls. The results show that our model outperforms the popular S2S models without exploiting topics from comments and the dual decoder design can further benefit the prediction of both questions and answers. Human evaluations further exhibit our superiority in yielding high-quality polls helpful to draw user engagements.

2020

pdf bib
Hashtags, Emotions, and Comments: A Large-Scale Dataset to Understand Fine-Grained Social Emotions to Online Topics
Keyang Ding | Jing Li | Yuji Zhang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

This paper studies social emotions to online discussion topics. While most prior work focus on emotions from writers, we investigate readers’ responses and explore the public feelings to an online topic. A large-scale dataset is collected from Chinese microblog Sina Weibo with over 13 thousand trending topics, emotion votes in 24 fine-grained types from massive participants, and user comments to allow context understanding. In experiments, we examine baseline performance to predict a topic’s possible social emotions in a multilabel classification setting. The results show that a seq2seq model with user comment modeling performs the best, even surpassing human prediction. More analyses shed light on the effects of emotion types, topic description lengths, contexts from user comments, and the limited capacity of the existing models.