Keyu Chen
2023
CoLLiE: Collaborative Training of Large Language Models in an Efficient Way
Kai Lv
|
Shuo Zhang
|
Tianle Gu
|
Shuhao Xing
|
Jiawei Hong
|
Keyu Chen
|
Xiaoran Liu
|
Yuqing Yang
|
Honglin Guo
|
Tengxiao Liu
|
Yu Sun
|
Qipeng Guo
|
Hang Yan
|
Xipeng Qiu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
Large language models (LLMs) are increasingly pivotal in a wide range of natural language processing tasks. Access to pre-trained models, courtesy of the open-source community, has made it possible to adapt these models to specific applications for enhanced performance. However, the substantial resources required for training these models necessitate efficient solutions. This paper introduces CoLLiE, an efficient library that facilitates collaborative training of large language models using 3D parallelism, parameter-efficient fine-tuning (PEFT) methods, and optimizers such as Lion, Adan, Sophia, and LOMO. With its modular design and comprehensive functionality, CoLLiE offers a balanced blend of efficiency, ease of use, and customization. CoLLiE has proven superior training efficiency in comparison with prevalent solutions in pre-training and fine-tuning scenarios. Furthermore, we provide an empirical evaluation of the correlation between model size and GPU memory consumption under different optimization methods, as well as an analysis of the throughput. Lastly, we carry out a comprehensive comparison of various optimizers and PEFT methods within the instruction-tuning context. CoLLiE is available at https://github.com/OpenLMLab/collie.
Search
Fix data
Co-authors
- Tianle Gu 1
- Honglin Guo 1
- Qipeng Guo 1
- Jiawei Hong 1
- Xiaoran Liu 1
- show all...