Khalid Al Khatib

Also published as: Khalid Al-Khatib


pdf bib
Citance-Contextualized Summarization of Scientific Papers
Shahbaz Syed | Ahmad Hakimi | Khalid Al-Khatib | Martin Potthast
Findings of the Association for Computational Linguistics: EMNLP 2023

Current approaches to automatic summarization of scientific papers generate informative summaries in the form of abstracts. However, abstracts are not intended to show the relationship between a paper and the references cited in it. We propose a new contextualized summarization approach that can generate an informative summary conditioned on a given sentence containing the citation of a reference (a so-called “citance”). This summary outlines content of the cited paper relevant to the citation location. Thus, our approach extracts and models the citances of a paper, retrieves relevant passages from cited papers, and generates abstractive summaries tailored to each citance. We evaluate our approach using **Webis-Context-SciSumm-2023**, a new dataset containing 540K computer science papers and 4.6M citances therein.

pdf bib
Unveiling the Power of Argument Arrangement in Online Persuasive Discussions
Nailia Mirzakhmedova | Johannes Kiesel | Khalid Al-Khatib | Benno Stein
Findings of the Association for Computational Linguistics: EMNLP 2023

Previous research on argumentation in online discussions has largely focused on examining individual comments and neglected the interactive nature of discussions. In line with previous work, we represent individual comments as sequences of semantic argumentative unit types. However, because it is intuitively necessary for dialogical argumentation to address the opposing viewpoints, we extend this model by clustering type sequences into different argument arrangement patterns and representing discussions as sequences of these patterns. These sequences of patterns are a symbolic representation of argumentation strategies that capture the overall structure of discussions. Using this novel approach, we conduct an in-depth analysis of the strategies in 34,393 discussions from the online discussion forum Change My View and show that our discussion model is effective for persuasiveness prediction, outperforming LLM-based classifiers on the same data. Our results provide valuable insights into argumentation dynamics in online discussions and, through the presented prediction procedure, are of practical importance for writing assistance and persuasive text generation systems.

pdf bib
Indicative Summarization of Long Discussions
Shahbaz Syed | Dominik Schwabe | Khalid Al-Khatib | Martin Potthast
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Online forums encourage the exchange and discussion of different stances on many topics. Not only do they provide an opportunity to present one’s own arguments, but may also gather a broad cross-section of others’ arguments. However, the resulting long discussions are difficult to overview. This paper presents a novel unsupervised approach using large language models (LLMs) to generating indicative summaries for long discussions that basically serve as tables of contents. Our approach first clusters argument sentences, generates cluster labels as abstractive summaries, and classifies the generated cluster labels into argumentation frames resulting in a two-level summary. Based on an extensively optimized prompt engineering approach, we evaluate 19 LLMs for generative cluster labeling and frame classification. To evaluate the usefulness of our indicative summaries, we conduct a purpose-driven user study via a new visual interface called **Discussion Explorer**: It shows that our proposed indicative summaries serve as a convenient navigation tool to explore long discussions.

pdf bib
A New Dataset for Causality Identification in Argumentative Texts
Khalid Al Khatib | Michael Voelske | Anh Le | Shahbaz Syed | Martin Potthast | Benno Stein
Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue

Existing datasets for causality identification in argumentative texts have several limitations, such as the type of input text (e.g., only claims), causality type (e.g., only positive), and the linguistic patterns investigated (e.g., only verb connectives). To resolve these limitations, we build the Webis-Causality-23 dataset, with sophisticated inputs (all units from arguments), a balanced distribution of causality types, and a larger number of linguistic patterns denoting causality. The dataset contains 1485 examples derived by combining the two paradigms of distant supervision and uncertainty sampling to identify diverse, high-quality samples of causality relations, and annotate them in a cost-effective manner.


pdf bib
Analyzing Persuasion Strategies of Debaters on Social Media
Matti Wiegmann | Khalid Al Khatib | Vishal Khanna | Benno Stein
Proceedings of the 29th International Conference on Computational Linguistics

Existing studies on the analysis of persuasion in online discussions focus on investigating the effectiveness of comments in discussions and ignore the analysis of the effectiveness of debaters over multiple discussions. In this paper, we propose to quantify debaters effectiveness in the online discussion platform: “ChangeMyView” in order to explore diverse insights into their persuasion strategies. In particular, targeting debaters with different levels of effectiveness (e.g., good vs. bad), various behavioral characteristics (e..g, engagement) and text stylistic features (e.g., used frames) of debaters are carefully examined, leading to several outcomes that can be the backbone of writing assistants and persuasive text generation.

pdf bib
Differential Bias: On the Perceptibility of Stance Imbalance in Argumentation
Alonso Palomino | Khalid Al Khatib | Martin Potthast | Benno Stein
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022

Most research on natural language processing treats bias as an absolute concept: Based on a (probably complex) algorithmic analysis, a sentence, an article, or a text is classified as biased or not. Given the fact that for humans the question of whether a text is biased can be difficult to answer or is answered contradictory, we ask whether an “absolute bias classification” is a promising goal at all. We see the problem not in the complexity of interpreting language phenomena but in the diversity of sociocultural backgrounds of the readers, which cannot be handled uniformly: To decide whether a text has crossed the proverbial line between non-biased and biased is subjective. By asking “Is text X more [less, equally] biased than text Y?” we propose to analyze a simpler problem, which, by its construction, is rather independent of standpoints, views, or sociocultural aspects. In such a model, bias becomes a preference relation that induces a partial ordering from least biased to most biased texts without requiring a decision on where to draw the line. A prerequisite for this kind of bias model is the ability of humans to perceive relative bias differences in the first place. In our research, we selected a specific type of bias in argumentation, the stance bias, and designed a crowdsourcing study showing that differences in stance bias are perceptible when (light) support is provided through training or visual aid.


pdf bib
Employing Argumentation Knowledge Graphs for Neural Argument Generation
Khalid Al Khatib | Lukas Trautner | Henning Wachsmuth | Yufang Hou | Benno Stein
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Generating high-quality arguments, while being challenging, may benefit a wide range of downstream applications, such as writing assistants and argument search engines. Motivated by the effectiveness of utilizing knowledge graphs for supporting general text generation tasks, this paper investigates the usage of argumentation-related knowledge graphs to control the generation of arguments. In particular, we construct and populate three knowledge graphs, employing several compositions of them to encode various knowledge into texts of debate portals and relevant paragraphs from Wikipedia. Then, the texts with the encoded knowledge are used to fine-tune a pre-trained text generation model, GPT-2. We evaluate the newly created arguments manually and automatically, based on several dimensions important in argumentative contexts, including argumentativeness and plausibility. The results demonstrate the positive impact of encoding the graphs’ knowledge into debate portal texts for generating arguments with superior quality than those generated without knowledge.

pdf bib
Proceedings of the 8th Workshop on Argument Mining
Khalid Al-Khatib | Yufang Hou | Manfred Stede
Proceedings of the 8th Workshop on Argument Mining

pdf bib
Summary Explorer: Visualizing the State of the Art in Text Summarization
Shahbaz Syed | Tariq Yousef | Khalid Al Khatib | Stefan Jänicke | Martin Potthast
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

This paper introduces Summary Explorer, a new tool to support the manual inspection of text summarization systems by compiling the outputs of 55 state-of-the-art single document summarization approaches on three benchmark datasets, and visually exploring them during a qualitative assessment. The underlying design of the tool considers three well-known summary quality criteria (coverage, faithfulness, and position bias), encapsulated in a guided assessment based on tailored visualizations. The tool complements existing approaches for locally debugging summarization models and improves upon them. The tool is available at

pdf bib
Generating Informative Conclusions for Argumentative Texts
Shahbaz Syed | Khalid Al Khatib | Milad Alshomary | Henning Wachsmuth | Martin Potthast
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Controlled Neural Sentence-Level Reframing of News Articles
Wei-Fan Chen | Khalid Al Khatib | Benno Stein | Henning Wachsmuth
Findings of the Association for Computational Linguistics: EMNLP 2021

Framing a news article means to portray the reported event from a specific perspective, e.g., from an economic or a health perspective. Reframing means to change this perspective. Depending on the audience or the submessage, reframing can become necessary to achieve the desired effect on the readers. Reframing is related to adapting style and sentiment, which can be tackled with neural text generation techniques. However, it is more challenging since changing a frame requires rewriting entire sentences rather than single phrases. In this paper, we study how to computationally reframe sentences in news articles while maintaining their coherence to the context. We treat reframing as a sentence-level fill-in-the-blank task for which we train neural models on an existing media frame corpus. To guide the training, we propose three strategies: framed-language pretraining, named-entity preservation, and adversarial learning. We evaluate respective models automatically and manually for topic consistency, coherence, and successful reframing. Our results indicate that generating properly-framed text works well but with tradeoffs.

pdf bib
Argument Mining for Scholarly Document Processing: Taking Stock and Looking Ahead
Khalid Al Khatib | Tirthankar Ghosal | Yufang Hou | Anita de Waard | Dayne Freitag
Proceedings of the Second Workshop on Scholarly Document Processing

Argument mining targets structures in natural language related to interpretation and persuasion which are central to scientific communication. Most scholarly discourse involves interpreting experimental evidence and attempting to persuade other scientists to adopt the same conclusions. While various argument mining studies have addressed student essays and news articles, those that target scientific discourse are still scarce. This paper surveys existing work in argument mining of scholarly discourse, and provides an overview of current models, data, tasks, and applications. We identify a number of key challenges confronting argument mining in the scientific domain, and suggest some possible solutions and future directions.


pdf bib
Analyzing Political Bias and Unfairness in News Articles at Different Levels of Granularity
Wei-Fan Chen | Khalid Al Khatib | Henning Wachsmuth | Benno Stein
Proceedings of the Fourth Workshop on Natural Language Processing and Computational Social Science

Media is an indispensable source of information and opinion, shaping the beliefs and attitudes of our society. Obviously, media portals can also provide overly biased content, e.g., by reporting on political events in a selective or incomplete manner. A relevant question hence is whether and how such a form of unfair news coverage can be exposed. This paper addresses the automatic detection of bias, but it goes one step further in that it explores how political bias and unfairness are manifested linguistically. We utilize a new corpus of 6964 news articles with labels derived from to develop a neural model for bias assessment. Analyzing the model on article excerpts, we find insightful bias patterns at different levels of text granularity, from single words to the whole article discourse.

pdf bib
Crawling and Preprocessing Mailing Lists At Scale for Dialog Analysis
Janek Bevendorff | Khalid Al Khatib | Martin Potthast | Benno Stein
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper introduces the Webis Gmane Email Corpus 2019, the largest publicly available and fully preprocessed email corpus to date. We crawled more than 153 million emails from 14,699 mailing lists and segmented them into semantically consistent components using a new neural segmentation model. With 96% accuracy on 15 classes of email segments, our model achieves state-of-the-art performance while being more efficient to train than previous ones. All data, code, and trained models are made freely available alongside the paper.

pdf bib
Analyzing the Persuasive Effect of Style in News Editorial Argumentation
Roxanne El Baff | Henning Wachsmuth | Khalid Al Khatib | Benno Stein
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

News editorials argue about political issues in order to challenge or reinforce the stance of readers with different ideologies. Previous research has investigated such persuasive effects for argumentative content. In contrast, this paper studies how important the style of news editorials is to achieve persuasion. To this end, we first compare content- and style-oriented classifiers on editorials from the liberal NYTimes with ideology-specific effect annotations. We find that conservative readers are resistant to NYTimes style, but on liberals, style even has more impact than content. Focusing on liberals, we then cluster the leads, bodies, and endings of editorials, in order to learn about writing style patterns of effective argumentation.

pdf bib
Exploiting Personal Characteristics of Debaters for Predicting Persuasiveness
Khalid Al Khatib | Michael Völske | Shahbaz Syed | Nikolay Kolyada | Benno Stein
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Predicting the persuasiveness of arguments has applications as diverse as writing assistance, essay scoring, and advertising. While clearly relevant to the task, the personal characteristics of an argument’s source and audience have not yet been fully exploited toward automated persuasiveness prediction. In this paper, we model debaters’ prior beliefs, interests, and personality traits based on their previous activity, without dependence on explicit user profiles or questionnaires. Using a dataset of over 60,000 argumentative discussions, comprising more than three million individual posts collected from the subreddit r/ChangeMyView, we demonstrate that our modeling of debater’s characteristics enhances the prediction of argument persuasiveness as well as of debaters’ resistance to persuasion.

pdf bib
News Editorials: Towards Summarizing Long Argumentative Texts
Shahbaz Syed | Roxanne El Baff | Johannes Kiesel | Khalid Al Khatib | Benno Stein | Martin Potthast
Proceedings of the 28th International Conference on Computational Linguistics

The automatic summarization of argumentative texts has hardly been explored. This paper takes a further step in this direction, targeting news editorials, i.e., opinionated articles with a well-defined argumentation structure. With Webis-EditorialSum-2020, we present a corpus of 1330 carefully curated summaries for 266 news editorials. We evaluate these summaries based on a tailored annotation scheme, where a high-quality summary is expected to be thesis-indicative, persuasive, reasonable, concise, and self-contained. Our corpus contains at least three high-quality summaries for about 90% of the editorials, rendering it a valuable resource for the development and evaluation of summarization technology for long argumentative texts. We further report details of both, an in-depth corpus analysis, and the evaluation of two extractive summarization models.

pdf bib
Persuasiveness of News Editorials depending on Ideology and Personality
Roxanne El Baff | Khalid Al Khatib | Benno Stein | Henning Wachsmuth
Proceedings of the Third Workshop on Computational Modeling of People's Opinions, Personality, and Emotion's in Social Media

News editorials aim to shape the opinions of their readership and the general public on timely controversial issues. The impact of an editorial on the reader’s opinion does not only depend on its content and style, but also on the reader’s profile. Previous work has studied the effect of editorial style depending on general political ideologies (liberals vs.conservatives). In our work, we dig deeper into the persuasiveness of both content and style, exploring the role of the intensity of an ideology (lean vs.extreme) and the reader’s personality traits (agreeableness, conscientiousness, extraversion, neuroticism, and openness). Concretely, we train content- and style-based models on New York Times editorials for different ideology- and personality-specific groups. Our results suggest that particularly readers with extreme ideology and non “role model” personalities are impacted by style. We further analyze the importance of various text features with respect to the editorials’ impact, the readers’ profile, and the editorials’ geographical scope.

pdf bib
Style Analysis of Argumentative Texts by Mining Rhetorical Devices
Khalid Al Khatib | Viorel Morari | Benno Stein
Proceedings of the 7th Workshop on Argument Mining

Using the appropriate style is key for writing a high-quality text. Reliable computational style analysis is hence essential for the automation of nearly all kinds of text synthesis tasks. Research on style analysis focuses on recognition problems such as authorship identification; the respective technology (e.g., n-gram distribution divergence quantification) showed to be effective for discrimination, but inappropriate for text synthesis since the “essence of a style” remains implicit. This paper contributes right here: it studies the automatic analysis of style at the knowledge-level based on rhetorical devices. To this end, we developed and evaluated a grammar-based approach for identifying 26 syntax-based devices. Then, we employed that approach to distinguish various patterns of style in selected sets of argumentative articles and presidential debates. The patterns reveal several insights into the style used there, while being adequate for integration in text synthesis systems.

pdf bib
Detecting Media Bias in News Articles using Gaussian Bias Distributions
Wei-Fan Chen | Khalid Al Khatib | Benno Stein | Henning Wachsmuth
Findings of the Association for Computational Linguistics: EMNLP 2020

Media plays an important role in shaping public opinion. Biased media can influence people in undesirable directions and hence should be unmasked as such. We observe that feature-based and neural text classification approaches which rely only on the distribution of low-level lexical information fail to detect media bias. This weakness becomes most noticeable for articles on new events, where words appear in new contexts and hence their “bias predictiveness” is unclear. In this paper, we therefore study how second-order information about biased statements in an article helps to improve detection effectiveness. In particular, we utilize the probability distributions of the frequency, positions, and sequential order of lexical and informational sentence-level bias in a Gaussian Mixture Model. On an existing media bias dataset, we find that the frequency and positions of biased statements strongly impact article-level bias, whereas their exact sequential order is secondary. Using a standard model for sentence-level bias detection, we provide empirical evidence that article-level bias detectors that use second-order information clearly outperform those without.


pdf bib
Computational Argumentation Synthesis as a Language Modeling Task
Roxanne El Baff | Henning Wachsmuth | Khalid Al Khatib | Manfred Stede | Benno Stein
Proceedings of the 12th International Conference on Natural Language Generation

Synthesis approaches in computational argumentation so far are restricted to generating claim-like argument units or short summaries of debates. Ultimately, however, we expect computers to generate whole new arguments for a given stance towards some topic, backing up claims following argumentative and rhetorical considerations. In this paper, we approach such an argumentation synthesis as a language modeling task. In our language model, argumentative discourse units are the “words”, and arguments represent the “sentences”. Given a pool of units for any unseen topic-stance pair, the model selects a set of unit types according to a basic rhetorical strategy (logos vs. pathos), arranges the structure of the types based on the units’ argumentative roles, and finally “phrases” an argument by instantiating the structure with semantically coherent units from the pool. Our evaluation suggests that the model can, to some extent, mimic the human synthesis of strategy-specific arguments.

pdf bib
Unraveling the Search Space of Abusive Language in Wikipedia with Dynamic Lexicon Acquisition
Wei-Fan Chen | Khalid Al Khatib | Matthias Hagen | Henning Wachsmuth | Benno Stein
Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda

Many discussions on online platforms suffer from users offending others by using abusive terminology, threatening each other, or being sarcastic. Since an automatic detection of abusive language can support human moderators of online discussion platforms, detecting abusiveness has recently received increased attention. However, the existing approaches simply train one classifier for the whole variety of abusiveness. In contrast, our approach is to distinguish explicitly abusive cases from the more “shadowed” ones. By dynamically extending a lexicon of abusive terms (e.g., including new obfuscations of abusive terms), our approach can support a moderator with explicit unraveled explanations for why something was flagged as abusive: due to known explicitly abusive terms, due to newly detected (obfuscated) terms, or due to shadowed cases.


pdf bib
Modeling Deliberative Argumentation Strategies on Wikipedia
Khalid Al-Khatib | Henning Wachsmuth | Kevin Lang | Jakob Herpel | Matthias Hagen | Benno Stein
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper studies how the argumentation strategies of participants in deliberative discussions can be supported computationally. Our ultimate goal is to predict the best next deliberative move of each participant. In this paper, we present a model for deliberative discussions and we illustrate its operationalization. Previous models have been built manually based on a small set of discussions, resulting in a level of abstraction that is not suitable for move recommendation. In contrast, we derive our model statistically from several types of metadata that can be used for move description. Applied to six million discussions from Wikipedia talk pages, our approach results in a model with 13 categories along three dimensions: discourse acts, argumentative relations, and frames. On this basis, we automatically generate a corpus with about 200,000 turns, labeled for the 13 categories. We then operationalize the model with three supervised classifiers and provide evidence that the proposed categories can be predicted.

pdf bib
Challenge or Empower: Revisiting Argumentation Quality in a News Editorial Corpus
Roxanne El Baff | Henning Wachsmuth | Khalid Al-Khatib | Benno Stein
Proceedings of the 22nd Conference on Computational Natural Language Learning

News editorials are said to shape public opinion, which makes them a powerful tool and an important source of political argumentation. However, rarely do editorials change anyone’s stance on an issue completely, nor do they tend to argue explicitly (but rather follow a subtle rhetorical strategy). So, what does argumentation quality mean for editorials then? We develop the notion that an effective editorial challenges readers with opposing stance, and at the same time empowers the arguing skills of readers that share the editorial’s stance — or even challenges both sides. To study argumentation quality based on this notion, we introduce a new corpus with 1000 editorials from the New York Times, annotated for their perceived effect along with the annotators’ political orientations. Analyzing the corpus, we find that annotators with different orientation disagree on the effect significantly. While only 1% of all editorials changed anyone’s stance, more than 5% meet our notion. We conclude that our corpus serves as a suitable resource for studying the argumentation quality of news editorials.

pdf bib
Argumentation Synthesis following Rhetorical Strategies
Henning Wachsmuth | Manfred Stede | Roxanne El Baff | Khalid Al-Khatib | Maria Skeppstedt | Benno Stein
Proceedings of the 27th International Conference on Computational Linguistics

Persuasion is rarely achieved through a loose set of arguments alone. Rather, an effective delivery of arguments follows a rhetorical strategy, combining logical reasoning with appeals to ethics and emotion. We argue that such a strategy means to select, arrange, and phrase a set of argumentative discourse units. In this paper, we model rhetorical strategies for the computational synthesis of effective argumentation. In a study, we let 26 experts synthesize argumentative texts with different strategies for 10 topics. We find that the experts agree in the selection significantly more when following the same strategy. While the texts notably vary for different strategies, especially their arrangement remains stable. The results suggest that our model enables a strategical synthesis.

pdf bib
Learning to Flip the Bias of News Headlines
Wei-Fan Chen | Henning Wachsmuth | Khalid Al-Khatib | Benno Stein
Proceedings of the 11th International Conference on Natural Language Generation

This paper introduces the task of “flipping” the bias of news articles: Given an article with a political bias (left or right), generate an article with the same topic but opposite bias. To study this task, we create a corpus with bias-labeled articles from As a first step, we analyze the corpus and discuss intrinsic characteristics of bias. They point to the main challenges of bias flipping, which in turn lead to a specific setting in the generation process. The paper in hand narrows down the general bias flipping task to focus on bias flipping for news article headlines. A manual annotation of headlines from each side reveals that they are self-informative in general and often convey bias. We apply an autoencoder incorporating information from an article’s content to learn how to automatically flip the bias. From 200 generated headlines, 73 are classified as understandable by annotators, and 83 maintain the topic while having opposite bias. Insights from our analysis shed light on how to solve the main challenges of bias flipping.


pdf bib
WAT-SL: A Customizable Web Annotation Tool for Segment Labeling
Johannes Kiesel | Henning Wachsmuth | Khalid Al-Khatib | Benno Stein
Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics

A frequent type of annotations in text corpora are labeled text segments. General-purpose annotation tools tend to be overly comprehensive, often making the annotation process slower and more error-prone. We present WAT-SL, a new web-based tool that is dedicated to segment labeling and highly customizable to the labeling task at hand. We outline its main features and exemplify how we used it for a crowdsourced corpus with labeled argument units.

pdf bib
Patterns of Argumentation Strategies across Topics
Khalid Al-Khatib | Henning Wachsmuth | Matthias Hagen | Benno Stein
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

This paper presents an analysis of argumentation strategies in news editorials within and across topics. Given nearly 29,000 argumentative editorials from the New York Times, we develop two machine learning models, one for determining an editorial’s topic, and one for identifying evidence types in the editorial. Based on the distribution and structure of the identified types, we analyze the usage patterns of argumentation strategies among 12 different topics. We detect several common patterns that provide insights into the manifestation of argumentation strategies. Also, our experiments reveal clear correlations between the topics and the detected patterns.

pdf bib
Building an Argument Search Engine for the Web
Henning Wachsmuth | Martin Potthast | Khalid Al-Khatib | Yamen Ajjour | Jana Puschmann | Jiani Qu | Jonas Dorsch | Viorel Morari | Janek Bevendorff | Benno Stein
Proceedings of the 4th Workshop on Argument Mining

Computational argumentation is expected to play a critical role in the future of web search. To make this happen, many search-related questions must be revisited, such as how people query for arguments, how to mine arguments from the web, or how to rank them. In this paper, we develop an argument search framework for studying these and further questions. The framework allows for the composition of approaches to acquiring, mining, assessing, indexing, querying, retrieving, ranking, and presenting arguments while relying on standard infrastructure and interfaces. Based on the framework, we build a prototype search engine, called args, that relies on an initial, freely accessible index of nearly 300k arguments crawled from reliable web resources. The framework and the argument search engine are intended as an environment for collaborative research on computational argumentation and its practical evaluation.


pdf bib
Cross-Domain Mining of Argumentative Text through Distant Supervision
Khalid Al-Khatib | Henning Wachsmuth | Matthias Hagen | Jonas Köhler | Benno Stein
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Using Argument Mining to Assess the Argumentation Quality of Essays
Henning Wachsmuth | Khalid Al-Khatib | Benno Stein
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Argument mining aims to determine the argumentative structure of texts. Although it is said to be crucial for future applications such as writing support systems, the benefit of its output has rarely been evaluated. This paper puts the analysis of the output into the focus. In particular, we investigate to what extent the mined structure can be leveraged to assess the argumentation quality of persuasive essays. We find insightful statistical patterns in the structure of essays. From these, we derive novel features that we evaluate in four argumentation-related essay scoring tasks. Our results reveal the benefit of argument mining for assessing argumentation quality. Among others, we improve the state of the art in scoring an essay’s organization and its argument strength.

pdf bib
A News Editorial Corpus for Mining Argumentation Strategies
Khalid Al-Khatib | Henning Wachsmuth | Johannes Kiesel | Matthias Hagen | Benno Stein
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Many argumentative texts, and news editorials in particular, follow a specific strategy to persuade their readers of some opinion or attitude. This includes decisions such as when to tell an anecdote or where to support an assumption with statistics, which is reflected by the composition of different types of argumentative discourse units in a text. While several argument mining corpora have recently been published, they do not allow the study of argumentation strategies due to incomplete or coarse-grained unit annotations. This paper presents a novel corpus with 300 editorials from three diverse news portals that provides the basis for mining argumentation strategies. Each unit in all editorials has been assigned one of six types by three annotators with a high Fleiss’ Kappa agreement of 0.56. We investigate various challenges of the annotation process and we conduct a first corpus analysis. Our results reveal different strategies across the news portals, exemplifying the benefit of studying editorials—a so far underresourced text genre in argument mining.


pdf bib
A Shared Task on Argumentation Mining in Newspaper Editorials
Johannes Kiesel | Khalid Al-Khatib | Matthias Hagen | Benno Stein
Proceedings of the 2nd Workshop on Argumentation Mining


pdf bib
Automatic Detection of Point of View Differences in Wikipedia
Khalid Al Khatib | Hinrich Schütze | Cathleen Kantner
Proceedings of COLING 2012