Khanh Doan


pdf bib
Matching The Statements: A Simple and Accurate Model for Key Point Analysis
Hoang Phan | Long Nguyen | Long Nguyen | Khanh Doan
Proceedings of the 8th Workshop on Argument Mining

Key Point Analysis (KPA) is one of the most essential tasks in building an Opinion Summarization system, which is capable of generating key points for a collection of arguments toward a particular topic. Furthermore, KPA allows quantifying the coverage of each summary by counting its matched arguments. With the aim of creating high-quality summaries, it is necessary to have an in-depth understanding of each individual argument as well as its universal semantic in a specified context. In this paper, we introduce a promising model, named Matching the Statements (MTS) that incorporates the discussed topic information into arguments/key points comprehension to fully understand their meanings, thus accurately performing ranking and retrieving best-match key points for an input argument. Our approach has achieved the 4th place in Track 1 of the Quantitative Summarization – Key Point Analysis Shared Task by IBM, yielding a competitive performance of 0.8956 (3rd) and 0.9632 (7th) strict and relaxed mean Average Precision, respectively.