Konstantin Kobs


pdf bib
LSX_team5 at SemEval-2022 Task 8: Multilingual News Article Similarity Assessment based on Word- and Sentence Mover’s Distance
Stefan Heil | Karina Kopp | Albin Zehe | Konstantin Kobs | Andreas Hotho
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper introduces our submission for the SemEval 2022 Task 8: Multilingual News Article Similarity. The task of the competition consisted of the development of a model, capable of determining the similarity between pairs of multilingual news articles. To address this challenge, we evaluated the Word Mover’s Distance in conjunction with word embeddings from ConceptNet Numberbatch and term frequencies of WorldLex, as well the Sentence Mover’s Distance based on sentence embeddings generated by pretrained transformer models of Sentence-BERT. To facilitate the comparison of multilingual articles with Sentence-BERT models, we deployed a Neural Machine Translation system. All our models achieve stable results in multilingual similarity estimation without learning parameters.

pdf bib
WueDevils at SemEval-2022 Task 8: Multilingual News Article Similarity via Pair-Wise Sentence Similarity Matrices
Dirk Wangsadirdja | Felix Heinickel | Simon Trapp | Albin Zehe | Konstantin Kobs | Andreas Hotho
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

We present a system that creates pair-wise cosine and arccosine sentence similarity matrices using multilingual sentence embeddings obtained from pre-trained SBERT and Universal Sentence Encoder (USE) models respectively. For each news article sentence, it searches the most similar sentence from the other article and computes an average score. Further, a convolutional neural network calculates a total similarity score for the article pairs on these matrices. Finally, a random forest regressor merges the previous results to a final score that can optionally be extended with a publishing date score.


pdf bib
Where to Submit? Helping Researchers to Choose the Right Venue
Konstantin Kobs | Tobias Koopmann | Albin Zehe | David Fernes | Philipp Krop | Andreas Hotho
Findings of the Association for Computational Linguistics: EMNLP 2020

Whenever researchers write a paper, the same question occurs: “Where to submit?” In this work, we introduce WTS, an open and interpretable NLP system that recommends conferences and journals to researchers based on the title, abstract, and/or keywords of a given paper. We adapt the TextCNN architecture and automatically analyze its predictions using the Integrated Gradients method to highlight words and phrases that led to the recommendation of a scientific venue. We train and test our method on publications from the fields of artificial intelligence (AI) and medicine, both derived from the Semantic Scholar dataset. WTS achieves an Accuracy@5 of approximately 83% for AI papers and 95% in the field of medicine. It is open source and available for testing on https://wheretosubmit.ml.

pdf bib
Improving Sentiment Analysis with Biofeedback Data
Daniel Schlör | Albin Zehe | Konstantin Kobs | Blerta Veseli | Franziska Westermeier | Larissa Brübach | Daniel Roth | Marc Erich Latoschik | Andreas Hotho
Proceedings of LREC2020 Workshop "People in language, vision and the mind" (ONION2020)

Humans frequently are able to read and interpret emotions of others by directly taking verbal and non-verbal signals in human-to-human communication into account or to infer or even experience emotions from mediated stories. For computers, however, emotion recognition is a complex problem: Thoughts and feelings are the roots of many behavioural responses and they are deeply entangled with neurophysiological changes within humans. As such, emotions are very subjective, often are expressed in a subtle manner, and are highly depending on context. For example, machine learning approaches for text-based sentiment analysis often rely on incorporating sentiment lexicons or language models to capture the contextual meaning. This paper explores if and how we further can enhance sentiment analysis using biofeedback of humans which are experiencing emotions while reading texts. Specifically, we record the heart rate and brain waves of readers that are presented with short texts which have been annotated with the emotions they induce. We use these physiological signals to improve the performance of a lexicon-based sentiment classifier. We find that the combination of several biosignals can improve the ability of a text-based classifier to detect the presence of a sentiment in a text on a per-sentence level.