Kun Gai


2024

pdf bib
Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs
Chenxi Sun | Hongzhi Zhang | Zijia Lin | Jingyuan Zhang | Fuzheng Zhang | Zhongyuan Wang | Bin Chen | Chengru Song | Di Zhang | Kun Gai | Deyi Xiong
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models have demonstrated exceptional capability in natural language understanding and generation. However, their generation speed is limited by the inherently sequential nature of their decoding process, posing challenges for real-time applications. This paper introduces Lexical Unit Decoding (LUD), a novel decoding methodology implemented in a data-driven manner, accelerating the decoding process without sacrificing output quality. The core of our approach is the observation that a pre-trained language model can confidently predict multiple contiguous tokens, forming the basis for a lexical unit, in which these contiguous tokens could be decoded in parallel. Extensive experiments validate that our method substantially reduces decoding time while maintaining generation quality, i.e., 33% speed up on natural language generation with no quality loss, and 30% speed up on code generation with a negligible quality loss of 3%. Distinctively, LUD requires no auxiliary models and does not require changes to existing architectures. It can also be integrated with other decoding acceleration methods, thus achieving an even more pronounced inference efficiency boost. We posit that the foundational principles of LUD could define a new decoding paradigm for future language models, enhancing their applicability for a broader spectrum of applications. All codes are be publicly available at https://github.com/tjunlp-lab/Lexical-Unit-Decoding-LUD-.

pdf bib
DialogBench: Evaluating LLMs as Human-like Dialogue Systems
Jiao Ou | Junda Lu | Che Liu | Yihong Tang | Fuzheng Zhang | Di Zhang | Kun Gai
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language models (LLMs) have achieved remarkable breakthroughs in new dialogue capabilities by leveraging instruction tuning,which refreshes human impressions of dialogue systems. The long-standing goal of dialogue systems is to be human-like enough to establish long-term connections with users. Therefore, there has been an urgent need to evaluate LLMs as human-like dialogue systems. In this paper, we propose DialogBench, a dialogue evaluation benchmark that contains 12 dialogue tasks to probe the capabilities of LLMs as human-like dialogue systems should have. Specifically, we prompt GPT-4 to generate evaluation instances for each task. We first design the basic prompt based on widely used design principles and further mitigate the existing biases to generate higher-quality evaluation instances. Our extensive tests on English and Chinese DialogBench of 26 LLMs show that instruction tuning improves the human likeness of LLMs to a certain extent, but most LLMs still have much room for improvement as human-like dialogue systems. Interestingly, results also show that the positioning of assistant AI can make instruction tuning weaken the human emotional perception of LLMs and their mastery of information about human daily life.

2019

pdf bib
Stick to the Facts: Learning towards a Fidelity-oriented E-Commerce Product Description Generation
Zhangming Chan | Xiuying Chen | Yongliang Wang | Juntao Li | Zhiqiang Zhang | Kun Gai | Dongyan Zhao | Rui Yan
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Different from other text generation tasks, in product description generation, it is of vital importance to generate faithful descriptions that stick to the product attribute information. However, little attention has been paid to this problem. To bridge this gap we propose a model named Fidelity-oriented Product Description Generator (FPDG). FPDG takes the entity label of each word into account, since the product attribute information is always conveyed by entity words. Specifically, we first propose a Recurrent Neural Network (RNN) decoder based on the Entity-label-guided Long Short-Term Memory (ELSTM) cell, taking both the embedding and the entity label of each word as input. Second, we establish a keyword memory that stores the entity labels as keys and keywords as values, and FPDG will attend to keywords through attending to their entity labels. Experiments conducted a large-scale real-world product description dataset show that our model achieves the state-of-the-art performance in terms of both traditional generation metrics as well as human evaluations. Specifically, FPDG increases the fidelity of the generated descriptions by 25%.