Kun Yan


2023

pdf bib
CONE: An Efficient COarse-to-fiNE Alignment Framework for Long Video Temporal Grounding
Zhijian Hou | Wanjun Zhong | Lei Ji | Difei Gao | Kun Yan | W.k. Chan | Chong-Wah Ngo | Mike Zheng Shou | Nan Duan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper tackles an emerging and challenging problem of long video temporal grounding (VTG) that localizes video moments related to a natural language (NL) query. Compared with short videos, long videos are also highly demanded but less explored, which brings new challenges in higher inference computation cost and weaker multi-modal alignment. To address these challenges, we propose CONE, an efficient COarse-to-fiNE alignment framework. CONE is a plug-and-play framework on top of existing VTG models to handle long videos through a sliding window mechanism. Specifically, CONE (1) introduces a query-guided window selection strategy to speed up inference, and (2) proposes a coarse-to-fine mechanism via a novel incorporation of contrastive learning to enhance multi-modal alignment for long videos. Extensive experiments on two large-scale long VTG benchmarks consistently show both substantial performance gains (e.g., from 3.13 to 6.87% on MAD) and state-of-the-art results. Analyses also reveal higher efficiency as the query-guided window selection mechanism accelerates inference time by 2x on Ego4D-NLQ and 15x on MAD while keeping SOTA results. Codes have been released at https://github.com/houzhijian/CONE.

pdf bib
KU-DMIS-MSRA at RadSum23: Pre-trained Vision-Language Model for Radiology Report Summarization
Gangwoo Kim | Hajung Kim | Lei Ji | Seongsu Bae | Chanhwi Kim | Mujeen Sung | Hyunjae Kim | Kun Yan | Eric Chang | Jaewoo Kang
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks

In this paper, we introduce CheXOFA, a new pre-trained vision-language model (VLM) for the chest X-ray domain. Our model is initially pre-trained on various multimodal datasets within the general domain before being transferred to the chest X-ray domain. Following a prominent VLM, we unify various domain-specific tasks into a simple sequence-to-sequence schema. It enables the model to effectively learn the required knowledge and skills from limited resources in the domain. Demonstrating superior performance on the benchmark datasets provided by the BioNLP shared task (Delbrouck et al., 2023), our model benefits from its training across multiple tasks and domains. With subtle techniques including ensemble and factual calibration, our system achieves first place on the RadSum23 leaderboard for the hidden test set.

2021

pdf bib
Control Image Captioning Spatially and Temporally
Kun Yan | Lei Ji | Huaishao Luo | Ming Zhou | Nan Duan | Shuai Ma
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Generating image captions with user intention is an emerging need. The recently published Localized Narratives dataset takes mouse traces as another input to the image captioning task, which is an intuitive and efficient way for a user to control what to describe in the image. However, how to effectively employ traces to improve generation quality and controllability is still under exploration. This paper aims to solve this problem by proposing a novel model called LoopCAG, which connects Contrastive constraints and Attention Guidance in a Loop manner, engaged explicit spatial and temporal constraints to the generating process. Precisely, each generated sentence is temporally aligned to the corresponding trace sequence through a contrastive learning strategy. Besides, each generated text token is supervised to attend to the correct visual objects under heuristic spatial attention guidance. Comprehensive experimental results demonstrate that our LoopCAG model learns better correspondence among the three modalities (vision, language, and traces) and achieves SOTA performance on trace-controlled image captioning task. Moreover, the controllability and explainability of LoopCAG are validated by analyzing spatial and temporal sensitivity during the generation process.