Kunho Kim


pdf bib
When does text prediction benefit from additional context? An exploration of contextual signals for chat and email messages
Stojan Trajanovski | Chad Atalla | Kunho Kim | Vipul Agarwal | Milad Shokouhi | Chris Quirk
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers

Email and chat communication tools are increasingly important for completing daily tasks. Accurate real-time phrase completion can save time and bolster productivity. Modern text prediction algorithms are based on large language models which typically rely on the prior words in a message to predict a completion. We examine how additional contextual signals (from previous messages, time, and subject) affect the performance of a commercial text prediction model. We compare contextual text prediction in chat and email messages from two of the largest commercial platforms Microsoft Teams and Outlook, finding that contextual signals contribute to performance differently between these scenarios. On emails, time context is most beneficial with small relative gains of 2% over baseline. Whereas, in chat scenarios, using a tailored set of previous messages as context yields relative improvements over the baseline between 9.3% and 18.6% across various critical service-oriented text prediction metrics.


pdf bib
Learning CNF Blocking for Large-scale Author Name Disambiguation
Kunho Kim | Athar Sefid | C. Lee Giles
Proceedings of the First Workshop on Scholarly Document Processing

Author name disambiguation (AND) algorithms identify a unique author entity record from all similar or same publication records in scholarly or similar databases. Typically, a clustering method is used that requires calculation of similarities between each possible record pair. However, the total number of pairs grows quadratically with the size of the author database making such clustering difficult for millions of records. One remedy is a blocking function that reduces the number of pairwise similarity calculations. Here, we introduce a new way of learning blocking schemes by using a conjunctive normal form (CNF) in contrast to the disjunctive normal form (DNF). We demonstrate on PubMed author records that CNF blocking reduces more pairs while preserving high pairs completeness compared to the previous methods that use a DNF and that the computation time is significantly reduced. In addition, we also show how to ensure that the method produces disjoint blocks so that much of the AND algorithm can be efficiently paralleled. Our CNF blocking method is tested on the entire PubMed database of 80 million author mentions and efficiently removes 82.17% of all author record pairs in 10 minutes.


pdf bib
Slot Tagging for Task Oriented Spoken Language Understanding in Human-to-Human Conversation Scenarios
Kunho Kim | Rahul Jha | Kyle Williams | Alex Marin | Imed Zitouni
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Task oriented language understanding (LU) in human-to-machine (H2M) conversations has been extensively studied for personal digital assistants. In this work, we extend the task oriented LU problem to human-to-human (H2H) conversations, focusing on the slot tagging task. Recent advances on LU in H2M conversations have shown accuracy improvements by adding encoded knowledge from different sources. Inspired by this, we explore several variants of a bidirectional LSTM architecture that relies on different knowledge sources, such as Web data, search engine click logs, expert feedback from H2M models, as well as previous utterances in the conversation. We also propose ensemble techniques that aggregate these different knowledge sources into a single model. Experimental evaluation on a four-turn Twitter dataset in the restaurant and music domains shows improvements in the slot tagging F1-score of up to 6.09% compared to existing approaches.