Kush Attal
2024
Towards Answering Health-related Questions from Medical Videos: Datasets and Approaches
Deepak Gupta
|
Kush Attal
|
Dina Demner-Fushman
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
The increase in the availability of online videos has transformed the way we access information and knowledge. A growing number of individuals now prefer instructional videos as they offer a series of step-by-step procedures to accomplish particular tasks. Instructional videos from the medical domain may provide the best possible visual answers to first aid, medical emergency, and medical education questions. This paper focuses on answering health-related questions asked by health consumers by providing visual answers from medical videos. The scarcity of large-scale datasets in the medical domain is a key challenge that hinders the development of applications that can help the public with their health-related questions. To address this issue, we first proposed a pipelined approach to create two large-scale datasets: HealthVidQA-CRF and HealthVidQA-Prompt. Leveraging the datasets, we developed monomodal and multimodal approaches that can effectively provide visual answers from medical videos to natural language questions. We conducted a comprehensive analysis of the results and outlined the findings, focusing on the impact of the created datasets on model training and the significance of visual features in enhancing the performance of the monomodal and multi-modal approaches for medical visual answer localization task.
Pedagogically Aligned Objectives Create Reliable Automatic Cloze Tests
Brian Ondov
|
Kush Attal
|
Dina Demner-Fushman
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
The cloze training objective of Masked Language Models makes them a natural choice for generating plausible distractors for human cloze questions. However, distractors must also be both distinct and incorrect, neither of which is directly addressed by existing neural methods. Evaluation of recent models has also relied largely on automated metrics, which cannot demonstrate the reliability or validity of human comprehension tests. In this work, we first formulate the pedagogically motivated objectives of plausibility, incorrectness, and distinctiveness in terms of conditional distributions from language models. Second, we present an unsupervised, interpretable method that uses these objectives to jointly optimize sets of distractors. Third, we test the reliability and validity of the resulting cloze tests compared to other methods with human participants. We find our method has stronger correlation with teacher-created comprehension tests than the state-of-the-art neural method and is more internally consistent. Our implementation is freely available and can quickly create a multiple choice cloze test from any given passage.