Kwabena Amponsah-Kaakyire


2022

pdf bib
Explaining Translationese: why are Neural Classifiers Better and what do they Learn?
Kwabena Amponsah-Kaakyire | Daria Pylypenko | Josef Genabith | Cristina España-Bonet
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Recent work has shown that neural feature- and representation-learning, e.g. BERT, achieves superior performance over traditional manual feature engineering based approaches, with e.g. SVMs, in translationese classification tasks. Previous research did not show (i) whether the difference is because of the features, the classifiers or both, and (ii) what the neural classifiers actually learn. To address (i), we carefully design experiments that swap features between BERT- and SVM-based classifiers. We show that an SVM fed with BERT representations performs at the level of the best BERT classifiers, while BERT learning and using handcrafted features performs at the level of an SVM using handcrafted features. This shows that the performance differences are due to the features. To address (ii) we use integrated gradients and find that (a) there is indication that information captured by hand-crafted features is only a subset of what BERT learns, and (b) part of BERT’s top performance results are due to BERT learning topic differences and spurious correlations with translationese.

2021

pdf bib
Comparing Feature-Engineering and Feature-Learning Approaches for Multilingual Translationese Classification
Daria Pylypenko | Kwabena Amponsah-Kaakyire | Koel Dutta Chowdhury | Josef van Genabith | Cristina España-Bonet
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Traditional hand-crafted linguistically-informed features have often been used for distinguishing between translated and original non-translated texts. By contrast, to date, neural architectures without manual feature engineering have been less explored for this task. In this work, we (i) compare the traditional feature-engineering-based approach to the feature-learning-based one and (ii) analyse the neural architectures in order to investigate how well the hand-crafted features explain the variance in the neural models’ predictions. We use pre-trained neural word embeddings, as well as several end-to-end neural architectures in both monolingual and multilingual settings and compare them to feature-engineering-based SVM classifiers. We show that (i) neural architectures outperform other approaches by more than 20 accuracy points, with the BERT-based model performing the best in both the monolingual and multilingual settings; (ii) while many individual hand-crafted translationese features correlate with neural model predictions, feature importance analysis shows that the most important features for neural and classical architectures differ; and (iii) our multilingual experiments provide empirical evidence for translationese universals across languages.

pdf bib
Do not Rely on Relay Translations: Multilingual Parallel Direct Europarl
Kwabena Amponsah-Kaakyire | Daria Pylypenko | Cristina España-Bonet | Josef van Genabith
Proceedings for the First Workshop on Modelling Translation: Translatology in the Digital Age

pdf bib
Findings of the 2021 Conference on Machine Translation (WMT21)
Farhad Akhbardeh | Arkady Arkhangorodsky | Magdalena Biesialska | Ondřej Bojar | Rajen Chatterjee | Vishrav Chaudhary | Marta R. Costa-jussa | Cristina España-Bonet | Angela Fan | Christian Federmann | Markus Freitag | Yvette Graham | Roman Grundkiewicz | Barry Haddow | Leonie Harter | Kenneth Heafield | Christopher Homan | Matthias Huck | Kwabena Amponsah-Kaakyire | Jungo Kasai | Daniel Khashabi | Kevin Knight | Tom Kocmi | Philipp Koehn | Nicholas Lourie | Christof Monz | Makoto Morishita | Masaaki Nagata | Ajay Nagesh | Toshiaki Nakazawa | Matteo Negri | Santanu Pal | Allahsera Auguste Tapo | Marco Turchi | Valentin Vydrin | Marcos Zampieri
Proceedings of the Sixth Conference on Machine Translation

This paper presents the results of the newstranslation task, the multilingual low-resourcetranslation for Indo-European languages, thetriangular translation task, and the automaticpost-editing task organised as part of the Con-ference on Machine Translation (WMT) 2021.In the news task, participants were asked tobuild machine translation systems for any of10 language pairs, to be evaluated on test setsconsisting mainly of news stories. The taskwas also opened up to additional test suites toprobe specific aspects of translation.

2020

pdf bib
Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of Yorùbá and Twi
Jesujoba Alabi | Kwabena Amponsah-Kaakyire | David Adelani | Cristina España-Bonet
Proceedings of the Twelfth Language Resources and Evaluation Conference

The success of several architectures to learn semantic representations from unannotated text and the availability of these kind of texts in online multilingual resources such as Wikipedia has facilitated the massive and automatic creation of resources for multiple languages. The evaluation of such resources is usually done for the high-resourced languages, where one has a smorgasbord of tasks and test sets to evaluate on. For low-resourced languages, the evaluation is more difficult and normally ignored, with the hope that the impressive capability of deep learning architectures to learn (multilingual) representations in the high-resourced setting holds in the low-resourced setting too. In this paper we focus on two African languages, Yorùbá and Twi, and compare the word embeddings obtained in this way, with word embeddings obtained from curated corpora and a language-dependent processing. We analyse the noise in the publicly available corpora, collect high quality and noisy data for the two languages and quantify the improvements that depend not only on the amount of data but on the quality too. We also use different architectures that learn word representations both from surface forms and characters to further exploit all the available information which showed to be important for these languages. For the evaluation, we manually translate the wordsim-353 word pairs dataset from English into Yorùbá and Twi. We extend the analysis to contextual word embeddings and evaluate multilingual BERT on a named entity recognition task. For this, we annotate with named entities the Global Voices corpus for Yorùbá. As output of the work, we provide corpora, embeddings and the test suits for both languages.