Kyle Shaffer


pdf bib
AbLit: A Resource for Analyzing and Generating Abridged Versions of English Literature
Melissa Roemmele | Kyle Shaffer | Katrina Olsen | Yiyi Wang | Steve DeNeefe
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Creating an abridged version of a text involves shortening it while maintaining its linguistic qualities. In this paper, we examine this task from an NLP perspective for the first time. We present a new resource, AbLit, which is derived from abridged versions of English literature books. The dataset captures passage-level alignments between the original and abridged texts. We characterize the linguistic relations of these alignments, and create automated models to predict these relations as well as to generate abridgements for new texts. Our findings establish abridgement as a challenging task, motivating future resources and research. The dataset is available at


pdf bib
Language Clustering for Multilingual Named Entity Recognition
Kyle Shaffer
Findings of the Association for Computational Linguistics: EMNLP 2021

Recent work in multilingual natural language processing has shown progress in various tasks such as natural language inference and joint multilingual translation. Despite success in learning across many languages, challenges arise where multilingual training regimes often boost performance on some languages at the expense of others. For multilingual named entity recognition (NER) we propose a simple technique that groups similar languages together by using embeddings from a pre-trained masked language model, and automatically discovering language clusters in this embedding space. Specifically, we fine-tune an XLM-Roberta model on a language identification task, and use embeddings from this model for clustering. We conduct experiments on 15 diverse languages in the WikiAnn dataset and show our technique largely outperforms three baselines: (1) training a multilingual model jointly on all available languages, (2) training one monolingual model per language, and (3) grouping languages by linguistic family. We also conduct analyses showing meaningful multilingual transfer for low-resource languages (Swahili and Yoruba), despite being automatically grouped with other seemingly disparate languages.


pdf bib
Separating Facts from Fiction: Linguistic Models to Classify Suspicious and Trusted News Posts on Twitter
Svitlana Volkova | Kyle Shaffer | Jin Yea Jang | Nathan Hodas
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Pew research polls report 62 percent of U.S. adults get news on social media (Gottfried and Shearer, 2016). In a December poll, 64 percent of U.S. adults said that “made-up news” has caused a “great deal of confusion” about the facts of current events (Barthel et al., 2016). Fabricated stories in social media, ranging from deliberate propaganda to hoaxes and satire, contributes to this confusion in addition to having serious effects on global stability. In this work we build predictive models to classify 130 thousand news posts as suspicious or verified, and predict four sub-types of suspicious news – satire, hoaxes, clickbait and propaganda. We show that neural network models trained on tweet content and social network interactions outperform lexical models. Unlike previous work on deception detection, we find that adding syntax and grammar features to our models does not improve performance. Incorporating linguistic features improves classification results, however, social interaction features are most informative for finer-grained separation between four types of suspicious news posts.

pdf bib
Intrinsic and Extrinsic Evaluation of Spatiotemporal Text Representations in Twitter Streams
Lawrence Phillips | Kyle Shaffer | Dustin Arendt | Nathan Hodas | Svitlana Volkova
Proceedings of the 2nd Workshop on Representation Learning for NLP

Language in social media is a dynamic system, constantly evolving and adapting, with words and concepts rapidly emerging, disappearing, and changing their meaning. These changes can be estimated using word representations in context, over time and across locations. A number of methods have been proposed to track these spatiotemporal changes but no general method exists to evaluate the quality of these representations. Previous work largely focused on qualitative evaluation, which we improve by proposing a set of visualizations that highlight changes in text representation over both space and time. We demonstrate usefulness of novel spatiotemporal representations to explore and characterize specific aspects of the corpus of tweets collected from European countries over a two-week period centered around the terrorist attacks in Brussels in March 2016. In addition, we quantitatively evaluate spatiotemporal representations by feeding them into a downstream classification task – event type prediction. Thus, our work is the first to provide both intrinsic (qualitative) and extrinsic (quantitative) evaluation of text representations for spatiotemporal trends.