Kyuhong Shim


2024

pdf bib
InfiniPot: Infinite Context Processing on Memory-Constrained LLMs
Minsoo Kim | Kyuhong Shim | Jungwook Choi | Simyung Chang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Handling long input contexts remains a significant challenge for Large Language Models (LLMs), particularly in resource-constrained environments such as mobile devices. Our work aims to address this limitation by introducing InfiniPot, a novel KV cache control framework designed to enable pre-trained LLMs to manage extensive sequences within fixed memory constraints efficiently, without requiring additional training. InfiniPot leverages Continual Context Distillation (CCD), an iterative process that compresses and retains essential information through novel importance metrics, effectively maintaining critical data even without access to future context. Our comprehensive evaluations indicate that InfiniPot significantly outperforms models trained for long contexts in various NLP tasks, establishing its efficacy and versatility. This work represents a substantial advancement toward making LLMs applicable to a broader range of real-world scenarios.

pdf bib
Preserving Pre-trained Representation Space: On Effectiveness of Prefix-tuning for Large Multi-modal Models
Donghoon Kim | Gusang Lee | Kyuhong Shim | Byonghyo Shim
Findings of the Association for Computational Linguistics: EMNLP 2024

Recently, we have observed that Large Multi-modal Models (LMMs) are revolutionizing the way machines interact with the world, unlocking new possibilities across various multi-modal applications. To adapt LMMs for downstream tasks, parameter-efficient fine-tuning (PEFT) which only trains additional prefix tokens or modules, has gained popularity. Nevertheless, there has been little analysis of how PEFT works in LMMs. In this paper, we delve into the strengths and weaknesses of each tuning strategy, shifting the focus from the efficiency typically associated with these approaches. We first discover that model parameter tuning methods such as LoRA and Adapters, distort the feature representation space learned during pre-training, limiting the full utilization of pre-trained knowledge. We also demonstrate that prefix-tuning excels at preserving the representation space, despite of its lower performance on downstream tasks. These findings suggest a simple two-step PEFT strategy called Prefix-Tuned PEFT (PT-PEFT), which successively performs prefix-tuning and then other PEFT (i.e., Adapter, LoRA), combines the benefits of both. Experimental results show that PT-PEFT not only improves performance in image captioning and visual question answering compared to vanilla PEFT methods but also helps preserve the representation space of the four pre-trained models.

pdf bib
Semantic Token Reweighting for Interpretable and Controllable Text Embeddings in CLIP
Eunji Kim | Kyuhong Shim | Simyung Chang | Sungroh Yoon
Findings of the Association for Computational Linguistics: EMNLP 2024

A text encoder within Vision-Language Models (VLMs) like CLIP plays a crucial role in translating textual input into an embedding space shared with images, thereby facilitating the interpretative analysis of vision tasks through natural language. Despite the varying significance of different textual elements within a sentence depending on the context, efforts to account for variation of importance in constructing text embeddings have been lacking. We propose a framework of Semantic Token Reweighting to build Interpretable text embeddings (SToRI), which incorporates controllability as well. SToRI refines the text encoding process in CLIP by differentially weighting semantic elements based on contextual importance, enabling finer control over emphasis responsive to data-driven insights and user preferences. The efficacy of SToRI is demonstrated through comprehensive experiments on few-shot image classification and image retrieval tailored to user preferences.

pdf bib
Crayon: Customized On-Device LLM via Instant Adapter Blending and Edge-Server Hybrid Inference
Jihwan Bang | Juntae Lee | Kyuhong Shim | Seunghan Yang | Simyung Chang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The customization of large language models (LLMs) for user-specified tasks gets important. However, maintaining all the customized LLMs on cloud servers incurs substantial memory and computational overheads, and uploading user data can also lead to privacy concerns. On-device LLMs can offer a promising solution by mitigating these issues. Yet, the performance of on-device LLMs is inherently constrained by the limitations of small-scaled models. To overcome these restrictions, we first propose Crayon, a novel approach for on-device LLM customization. Crayon begins by constructing a pool of diverse base adapters, and then we instantly blend them into a customized adapter without extra training. In addition, we develop a device-server hybrid inference strategy, which deftly allocates more demanding queries or non-customized tasks to a larger, more capable LLM on a server. This ensures optimal performance without sacrificing the benefits of on-device customization. We carefully craft a novel benchmark from multiple question-answer datasets, and show the efficacy of our method in the LLM customization.

2023

pdf bib
Teacher Intervention: Improving Convergence of Quantization Aware Training for Ultra-Low Precision Transformers
Minsoo Kim | Kyuhong Shim | Seongmin Park | Wonyong Sung | Jungwook Choi
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Pre-trained Transformer models such as BERT have shown great success in a wide range of applications, but at the cost of substantial increases in model complexity. Quantization-aware training (QAT) is a promising method to lower the implementation cost and energy consumption. However, aggressive quantization below 2-bit causes considerable accuracy degradation due to unstable convergence, especially when the downstream dataset is not abundant. This work proposes a proactive knowledge distillation method called Teacher Intervention (TI) for fast converging QAT of ultra-low precision pre-trained Transformers. TI intervenes layer-wise signal propagation with the intact signal from the teacher to remove the interference of propagated quantization errors, smoothing loss surface of QAT and expediting the convergence. Furthermore, we propose a gradual intervention mechanism to stabilize the recovery of subsections of Transformer layers from quantization. The proposed schemes enable fast convergence of QAT and improve the model accuracy regardless of the diverse characteristics of downstream fine-tuning tasks. We demonstrate that TI consistently achieves superior accuracy with significantly lower fine-tuning iterations on well-known Transformers of natural language processing as well as computer vision compared to the state-of-the-art QAT methods.