Kyungho Kim


pdf bib
Non-Essential Is NEcessary: Order-agnostic Multi-hop Question Generation
Kyungho Kim | Seongmin Park | Junseo Lee | Jihwa Lee
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Existing multi-hop question generation (QG) methods treat answer-irrelevant documents as non-essential and remove them as impurities. However, this approach can create a training-inference discrepancy when impurities cannot be completely removed, which can lead to a decrease in model performance. To overcome this problem, we propose an auxiliary task, called order-agnostic, which leverages non-essential data in the training phase to create a robust model and extract the consistent embeddings in real-world inference environments. Additionally, we use a single LM to perform both ranker and generator through a prompt-based approach without applying additional external modules. Furthermore, we discover that appropriate utilization of the non-essential components can achieve a significant performance increase. Finally, experiments conducted on HotpotQA dataset achieve state-of-the-art.

pdf bib
RT-VQ2A2: Real Time Vector Quantized Question Answering with ASR
Kyungho Kim | Seongmin Park | Jihwa Lee
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In Spoken Question Answering (SQA), automatic speech recognition (ASR) outputs are often relayed to language models for QA. However, constructing such a cascaded framework with large language models (LLMs) in a real-time SQA setting involves realistic challenges, such as noise in the ASR output, the limited context length of LLMs, and latency in processing large models. This paper proposes a novel model-agnostic framework, RT-VQ2A2, to address these challenges. RT-VQ2A2 consists of three steps: codebook preparation, quantized semantic vector extractor, and dual segment selector. We construct a codebook from clustering, removing outliers on a text corpus derived from ASR to mitigate the influence of ASR error. Extracting quantized semantic vectors through a pre-built codebook shows significant speed and performance improvements in relevant context retrieval. Dual segment selector considers both semantic and lexical aspects to deal with ASR error. The efficacy of RT-VQ2A2 is validated on the widely used Spoken-SQuAD dataset.


pdf bib
Cross-task Knowledge Transfer for Extremely Weakly Supervised Text Classification
Seongmin Park | Kyungho Kim | Jihwa Lee
Findings of the Association for Computational Linguistics: ACL 2023

Text classification with extremely weak supervision (EWS) imposes stricter supervision constraints compared to regular weakly supervise classification. Absolutely no labeled training samples or hand-crafted rules specific to the evaluation data are allowed. Such restrictions limit state-of-the-art EWS classification methods to indirect weak labeling techniques that assign unnatural label uncertainty estimates. We present PLAT, a framework that creates weak labels by leveraging recent developments in zero-shot text classification. PLAT employs models trained for sub-tasks other than classification to label documents. Most importantly, PLAT refrains from assigning overly confident weak labels and improves soft-label training performance for downstream classifiers. Classifiers trained with PLAT significantly outperform those trained on weak labels generated by the previous state-of-the-art in extremely weakly supervised text classification.


pdf bib
Query Generation for Multimodal Documents
Kyungho Kim | Kyungjae Lee | Seung-won Hwang | Young-In Song | Seungwook Lee
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

This paper studies the problem of generatinglikely queries for multimodal documents withimages. Our application scenario is enablingefficient “first-stage retrieval” of relevant doc-uments, by attaching generated queries to doc-uments before indexing. We can then indexthis expanded text to efficiently narrow downto candidate matches using inverted index, sothat expensive reranking can follow. Our eval-uation results show that our proposed multi-modal representation meaningfully improvesrelevance ranking. More importantly, ourframework can achieve the state of the art inthe first stage retrieval scenarios