Laia Tarres


2022

pdf bib
Tackling Low-Resourced Sign Language Translation: UPC at WMT-SLT 22
Laia Tarres | Gerard I. Gállego | Xavier Giro-i-nieto | Jordi Torres
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper describes the system developed at the Universitat Politècnica de Catalunya for the Workshop on Machine Translation 2022 Sign Language Translation Task, in particular, for the sign-to-text direction. We use a Transformer model implemented with the Fairseq modeling toolkit. We have experimented with the vocabulary size, data augmentation techniques and pretraining the model with the PHOENIX-14T dataset. Our system obtains 0.50 BLEU score for the test set, improving the organizers’ baseline by 0.38 BLEU. We remark the poor results for both the baseline and our system, and thus, the unreliability of our findings.