Laishram Rahul


2021

pdf bib
An Experiment on Speech-to-Text Translation Systems for Manipuri to English on Low Resource Setting
Loitongbam Sanayai Meetei | Laishram Rahul | Alok Singh | Salam Michael Singh | Thoudam Doren Singh | Sivaji Bandyopadhyay
Proceedings of the 18th International Conference on Natural Language Processing (ICON)

In this paper, we report the experimental findings of building Speech-to-Text translation systems for Manipuri-English on low resource setting which is first of its kind in this language pair. For this purpose, a new dataset consisting of a Manipuri-English parallel corpus along with the corresponding audio version of the Manipuri text is built. Based on this dataset, a benchmark evaluation is reported for the Manipuri-English Speech-to-Text translation using two approaches: 1) a pipeline model consisting of ASR (Automatic Speech Recognition) and Machine translation, and 2) an end-to-end Speech-to-Text translation. Gaussian Mixture Model-Hidden Markov Model (GMM-HMM) and Time delay neural network (TDNN) Acoustic models are used to build two different pipeline systems using a shared MT system. Experimental result shows that the TDNN model outperforms GMM-HMM model significantly by a margin of 2.53% WER. However, their evaluation of Speech-to-Text translation differs by a small margin of 0.1 BLEU. Both the pipeline translation models outperform the end-to-end translation model by a margin of 2.6 BLEU score.