Lama Alkhaled


pdf bib
AfriMTE and AfriCOMET: Enhancing COMET to Embrace Under-resourced African Languages
Jiayi Wang | David Adelani | Sweta Agrawal | Marek Masiak | Ricardo Rei | Eleftheria Briakou | Marine Carpuat | Xuanli He | Sofia Bourhim | Andiswa Bukula | Muhidin Mohamed | Temitayo Olatoye | Tosin Adewumi | Hamam Mokayed | Christine Mwase | Wangui Kimotho | Foutse Yuehgoh | Anuoluwapo Aremu | Jessica Ojo | Shamsuddeen Muhammad | Salomey Osei | Abdul-Hakeem Omotayo | Chiamaka Chukwuneke | Perez Ogayo | Oumaima Hourrane | Salma El Anigri | Lolwethu Ndolela | Thabiso Mangwana | Shafie Mohamed | Hassan Ayinde | Oluwabusayo Awoyomi | Lama Alkhaled | Sana Al-azzawi | Naome Etori | Millicent Ochieng | Clemencia Siro | Njoroge Kiragu | Eric Muchiri | Wangari Kimotho | Toadoum Sari Sakayo | Lyse Naomi Wamba | Daud Abolade | Simbiat Ajao | Iyanuoluwa Shode | Ricky Macharm | Ruqayya Iro | Saheed Abdullahi | Stephen Moore | Bernard Opoku | Zainab Akinjobi | Abeeb Afolabi | Nnaemeka Obiefuna | Onyekachi Ogbu | Sam Ochieng’ | Verrah Otiende | Chinedu Mbonu | Yao Lu | Pontus Stenetorp
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Despite the recent progress on scaling multilingual machine translation (MT) to several under-resourced African languages, accurately measuring this progress remains challenging, since evaluation is often performed on n-gram matching metrics such as BLEU, which typically show a weaker correlation with human judgments. Learned metrics such as COMET have higher correlation; however, the lack of evaluation data with human ratings for under-resourced languages, complexity of annotation guidelines like Multidimensional Quality Metrics (MQM), and limited language coverage of multilingual encoders have hampered their applicability to African languages. In this paper, we address these challenges by creating high-quality human evaluation data with simplified MQM guidelines for error detection and direct assessment (DA) scoring for 13 typologically diverse African languages. Furthermore, we develop AfriCOMET: COMET evaluation metrics for African languages by leveraging DA data from well-resourced languages and an African-centric multilingual encoder (AfroXLM-R) to create the state-of-the-art MT evaluation metrics for African languages with respect to Spearman-rank correlation with human judgments (0.441).


pdf bib
Bipol: Multi-Axes Evaluation of Bias with Explainability in Benchmark Datasets
Tosin Adewumi | Isabella Södergren | Lama Alkhaled | Sana Al-azzawi | Foteini Simistira Liwicki | Marcus Liwicki
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

We investigate five English NLP benchmark datasets (on the superGLUE leaderboard) and two Swedish datasets for bias, along multiple axes. The datasets are the following: Boolean Question (Boolq), CommitmentBank (CB), Winograd Schema Challenge (WSC), Winogender diagnostic (AXg), Recognising Textual Entailment (RTE), Swedish CB, and SWEDN. Bias can be harmful and it is known to be common in data, which ML models learn from. In order to mitigate bias in data, it is crucial to be able to estimate it objectively. We use bipol, a novel multi-axes bias metric with explainability, to estimate and explain how much bias exists in these datasets. Multilingual, multi-axes bias evaluation is not very common. Hence, we also contribute a new, large Swedish bias-labelled dataset (of 2 million samples), translated from the English version and train the SotA mT5 model on it. In addition, we contribute new multi-axes lexica for bias detection in Swedish. We make the codes, model, and new dataset publicly available.


pdf bib
ML_LTU at SemEval-2022 Task 4: T5 Towards Identifying Patronizing and Condescending Language
Tosin Adewumi | Lama Alkhaled | Hamam Mokayed | Foteini Liwicki | Marcus Liwicki
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes the system used by the Machine Learning Group of LTU in subtask 1 of the SemEval-2022 Task 4: Patronizing and Condescending Language (PCL) Detection. Our system consists of finetuning a pretrained text-to-text transfer transformer (T5) and innovatively reducing its out-of-class predictions. The main contributions of this paper are 1) the description of the implementation details of the T5 model we used, 2) analysis of the successes & struggles of the model in this task, and 3) ablation studies beyond the official submission to ascertain the relative importance of data split. Our model achieves an F1 score of 0.5452 on the official test set.