2020
pdf
bib
abs
Automatic Section Recognition in Obituaries
Valentino Sabbatino
|
Laura Ana Maria Bostan
|
Roman Klinger
Proceedings of the Twelfth Language Resources and Evaluation Conference
Obituaries contain information about people’s values across times and cultures, which makes them a useful resource for exploring cultural history. They are typically structured similarly, with sections corresponding to Personal Information, Biographical Sketch, Characteristics, Family, Gratitude, Tribute, Funeral Information and Other aspects of the person. To make this information available for further studies, we propose a statistical model which recognizes these sections. To achieve that, we collect a corpus of 20058 English obituaries from TheDaily Item, Remembering.CA and The London Free Press. The evaluation of our annotation guidelines with three annotators on 1008 obituaries shows a substantial agreement of Fleiss κ = 0.87. Formulated as an automatic segmentation task, a convolutional neural network outperforms bag-of-words and embedding-based BiLSTMs and BiLSTM-CRFs with a micro F1 = 0.81.
pdf
bib
abs
GoodNewsEveryone: A Corpus of News Headlines Annotated with Emotions, Semantic Roles, and Reader Perception
Laura Ana Maria Bostan
|
Evgeny Kim
|
Roman Klinger
Proceedings of the Twelfth Language Resources and Evaluation Conference
Most research on emotion analysis from text focuses on the task of emotion classification or emotion intensity regression. Fewer works address emotions as a phenomenon to be tackled with structured learning, which can be explained by the lack of relevant datasets. We fill this gap by releasing a dataset of 5000 English news headlines annotated via crowdsourcing with their associated emotions, the corresponding emotion experiencers and textual cues, related emotion causes and targets, as well as the reader’s perception of the emotion of the headline. This annotation task is comparably challenging, given the large number of classes and roles to be identified. We therefore propose a multiphase annotation procedure in which we first find relevant instances with emotional content and then annotate the more fine-grained aspects. Finally, we develop a baseline for the task of automatic prediction of semantic role structures and discuss the results. The corpus we release enables further research on emotion classification, emotion intensity prediction, emotion cause detection, and supports further qualitative studies.
pdf
bib
abs
Experiencers, Stimuli, or Targets: Which Semantic Roles Enable Machine Learning to Infer the Emotions?
Laura Ana Maria Oberländer
|
Kevin Reich
|
Roman Klinger
Proceedings of the Third Workshop on Computational Modeling of People's Opinions, Personality, and Emotion's in Social Media
Emotion recognition is predominantly formulated as text classification in which textual units are assigned to an emotion from a predefined inventory (e.g., fear, joy, anger, disgust, sadness, surprise, trust, anticipation). More recently, semantic role labeling approaches have been developed to extract structures from the text to answer questions like: “who is described to feel the emotion?” (experiencer), “what causes this emotion?” (stimulus), and at which entity is it directed?” (target). Though it has been shown that jointly modeling stimulus and emotion category prediction is beneficial for both subtasks, it remains unclear which of these semantic roles enables a classifier to infer the emotion. Is it the experiencer, because the identity of a person is biased towards a particular emotion (X is always happy)? Is it a particular target (everybody loves X) or a stimulus (doing X makes everybody sad)? We answer these questions by training emotion classification models on five available datasets annotated with at least one semantic role by masking the fillers of these roles in the text in a controlled manner and find that across multiple corpora, stimuli and targets carry emotion information, while the experiencer might be considered a confounder. Further, we analyze if informing the model about the position of the role improves the classification decision. Particularly on literature corpora we find that the role information improves the emotion classification.
pdf
bib
abs
Token Sequence Labeling vs. Clause Classification for English Emotion Stimulus Detection
Laura Ana Maria Oberländer
|
Roman Klinger
Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics
Emotion stimulus detection is the task of finding the cause of an emotion in a textual description, similar to target or aspect detection for sentiment analysis. Previous work approached this in three ways, namely (1) as text classification into an inventory of predefined possible stimuli (“Is the stimulus category A or B?”), (2) as sequence labeling of tokens (“Which tokens describe the stimulus?”), and (3) as clause classification (“Does this clause contain the emotion stimulus?”). So far, setting (3) has been evaluated broadly on Mandarin and (2) on English, but no comparison has been performed. Therefore, we analyze whether clause classification or token sequence labeling is better suited for emotion stimulus detection in English. We propose an integrated framework which enables us to evaluate the two different approaches comparably, implement models inspired by state-of-the-art approaches in Mandarin, and test them on four English data sets from different domains. Our results show that token sequence labeling is superior on three out of four datasets, in both clause-based and token sequence-based evaluation. The only case in which clause classification performs better is one data set with a high density of clause annotations. Our error analysis further confirms quantitatively and qualitatively that clauses are not the appropriate stimulus unit in English.
2019
pdf
bib
abs
Exploring Fine-Tuned Embeddings that Model Intensifiers for Emotion Analysis
Laura Ana Maria Bostan
|
Roman Klinger
Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
Adjective phrases like “a little bit surprised”, “completely shocked”, or “not stunned at all” are not handled properly by current state-of-the-art emotion classification and intensity prediction systems. Based on this finding, we analyze differences between embeddings used by these systems in regard to their capability of handling such cases and argue that intensifiers in context of emotion words need special treatment, as is established for sentiment polarity classification, but not for more fine-grained emotion prediction. To resolve this issue, we analyze different aspects of a post-processing pipeline which enriches the word representations of such phrases. This includes expansion of semantic spaces at the phrase level and sub-word level followed by retrofitting to emotion lexicons. We evaluate the impact of these steps with ‘A La Carte and Bag-of-Substrings extensions based on pretrained GloVe,Word2vec, and fastText embeddings against a crowd-sourced corpus of intensity annotations for tweets containing our focus phrases. We show that the fastText-based models do not gain from handling these specific phrases under inspection. For Word2vec embeddings, we show that our post-processing pipeline improves the results by up to 8% on a novel dataset densly populated with intensifiers while it does not decrease the performance on the established EmoInt dataset.
2018
pdf
bib
abs
An Analysis of Annotated Corpora for Emotion Classification in Text
Laura-Ana-Maria Bostan
|
Roman Klinger
Proceedings of the 27th International Conference on Computational Linguistics
Several datasets have been annotated and published for classification of emotions. They differ in several ways: (1) the use of different annotation schemata (e. g., discrete label sets, including joy, anger, fear, or sadness or continuous values including valence, or arousal), (2) the domain, and, (3) the file formats. This leads to several research gaps: supervised models often only use a limited set of available resources. Additionally, no previous work has compared emotion corpora in a systematic manner. We aim at contributing to this situation with a survey of the datasets, and aggregate them in a common file format with a common annotation schema. Based on this aggregation, we perform the first cross-corpus classification experiments in the spirit of future research enabled by this paper, in order to gain insight and a better understanding of differences of models inferred from the data. This work also simplifies the choice of the most appropriate resources for developing a model for a novel domain. One result from our analysis is that a subset of corpora is better classified with models trained on a different corpus. For none of the corpora, training on all data altogether is better than using a subselection of the resources. Our unified corpus is available at
http://www.ims.uni-stuttgart.de/data/unifyemotion.
pdf
bib
abs
DERE: A Task and Domain-Independent Slot Filling Framework for Declarative Relation Extraction
Heike Adel
|
Laura Ana Maria Bostan
|
Sean Papay
|
Sebastian Padó
|
Roman Klinger
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
Most machine learning systems for natural language processing are tailored to specific tasks. As a result, comparability of models across tasks is missing and their applicability to new tasks is limited. This affects end users without machine learning experience as well as model developers. To address these limitations, we present DERE, a novel framework for declarative specification and compilation of template-based information extraction. It uses a generic specification language for the task and for data annotations in terms of spans and frames. This formalism enables the representation of a large variety of natural language processing challenges. The backend can be instantiated by different models, following different paradigms. The clear separation of frame specification and model backend will ease the implementation of new models and the evaluation of different models across different tasks. Furthermore, it simplifies transfer learning, joint learning across tasks and/or domains as well as the assessment of model generalizability. DERE is available as open-source software.