State-space models are a low-complexity alternative to transformers for encoding long sequences and capturing long-term dependencies. We propose LOCOST: an encoder-decoder architecture based on state-space models for conditional text generation with long context inputs. With a computational complexity of đť’Ş(L log L), this architecture can handle significantly longer sequences than state-of-the-art models that are based on sparse attention patterns. We evaluate our model on a series of long document abstractive summarization tasks. The model reaches a performance level that is 93-96% comparable to the top-performing sparse transformers of the same size while saving up to 50% memory during training and up to 87% during inference. Additionally, LOCOST effectively handles input texts exceeding 600K tokens at inference time, setting new state-of-the-art results on full-book summarization and opening new perspectives for long input processing.
This article focuses on large language models (LLMs) fine-tuning in the scarce data regime (also known as “few-shot learning setting”). We propose a method to increase the generalization capabilities of LLMs based on neural network subspaces. This optimization method, recently introduced in computer vision, aims to improve model generalization by identifying wider local optima through the joint optimization of an entire simplex of models in parameter space. Although this property would be highly beneficial in the context of training large language models in the “few-shot learning” setting, its adaptation to massive, pretrained transformers poses some challenges. First, their considerable number of parameters make it difficult to train several model jointly, and second, their deterministic parameter initialisation schemes make them unfit to the subspace method as originaly proposed. We show in this paper that its application to “Parameter Efficient Fine-Tuning” (PEFT) methods, however, is relatively natural, and we propose to apply it to prefix-tuning, by learning entire simplexes of continous prefixes. We test our method on a variant of the GLUE benchmark adapted to the few-shot learning setting, and show that both our contributions (learning prefix simplexes, and non-deterministic validation metric inference) jointly lead to a gain in average performances compared to state of the art methods.
Neural data-to-text systems lack the control and factual accuracy required to generate useful and insightful summaries of multidimensional data. We propose a solution in the form of data views, where each view describes an entity and its attributes along specific dimensions. A sequence of views can then be used as a high-level schema for document planning, with the neural model handling the complexities of micro-planning and surface realization. We show that our view-based system retains factual accuracy while offering high-level control of output that can be tailored based on user preference or other norms within the domain.
QuestEval is a reference-less metric used in text-to-text tasks, that compares the generated summaries directly to the source text, by automatically asking and answering questions. Its adaptation to Data-to-Text tasks is not straightforward, as it requires multimodal Question Generation and Answering systems on the considered tasks, which are seldom available. To this purpose, we propose a method to build synthetic multimodal corpora enabling to train multimodal components for a data-QuestEval metric. The resulting metric is reference-less and multimodal; it obtains state-of-the-art correlations with human judgment on the WebNLG and WikiBio benchmarks. We make data-QuestEval’s code and models available for reproducibility purpose, as part of the QuestEval project.
In language generation models conditioned by structured data, the classical training via maximum likelihood almost always leads models to pick up on dataset divergence (i.e., hallucinations or omissions), and to incorporate them erroneously in their own generations at inference. In this work, we build on top of previous Reinforcement Learning based approaches and show that a model-agnostic framework relying on the recently introduced PARENT metric is efficient at reducing both hallucinations and omissions. Evaluations on the widely used WikiBIO and WebNLG benchmarks demonstrate the effectiveness of this framework compared to state-of-the-art models.
Language grounding is an active field aiming at enriching textual representations with visual information. Generally, textual and visual elements are embedded in the same representation space, which implicitly assumes a one-to-one correspondence between modalities. This hypothesis does not hold when representing words, and becomes problematic when used to learn sentence representations — the focus of this paper — as a visual scene can be described by a wide variety of sentences. To overcome this limitation, we propose to transfer visual information to textual representations by learning an intermediate representation space: the grounded space. We further propose two new complementary objectives ensuring that (1) sentences associated with the same visual content are close in the grounded space and (2) similarities between related elements are preserved across modalities. We show that this model outperforms the previous state-of-the-art on classification and semantic relatedness tasks.
Search-oriented conversational systems rely on information needs expressed in natural language (NL). We focus here on the understanding of NL expressions for building keyword-based queries. We propose a reinforcement-learning-driven translation model framework able to 1) learn the translation from NL expressions to queries in a supervised way, and, 2) to overcome the lack of large-scale dataset by framing the translation model as a word selection approach and injecting relevance feedback as a reward in the learning process. Experiments are carried out on two TREC datasets. We outline the effectiveness of our approach.