Lauren Levine


2022

pdf bib
The Distribution of Deontic Modals in Jane Austen’s Mature Novels
Lauren Levine
Proceedings of the 6th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature

Deontic modals are auxiliary verbs which express some kind of necessity, obligation, or moral recommendation. This paper investigates the collocation and distribution within Jane Austen’s six mature novels of the following deontic modals: must, should, ought, and need. We also examine the co-occurrences of these modals with name mentions of the heroines in the six novels, categorizing each occurrence with a category of obligation if applicable. The paper offers a brief explanation of the categories of obligation chosen for this investigation. In order to examine the types of obligations associated with each heroine, we then investigate the distribution of these categories in relation to mentions of each heroine. The patterns observed show a general concurrence with the thematic characterizations of Austen’s heroines which are found in literary analysis.

pdf bib
Sharing Data by Language Family: Data Augmentation for Romance Language Morpheme Segmentation
Lauren Levine
Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper presents a basic character level sequence-to-sequence approach to morpheme segmentation for the following Romance languages: French, Italian, and Spanish. We experiment with adding a small set of additional linguistic features, as well as with sharing training data between sister languages for morphological categories with low performance in single language base models. We find that while the additional linguistic features were generally not helpful in this instance, data augmentation between sister languages did help to raise the scores of some individual morphological categories, but did not consistently result in an overall improvement when considering the aggregate of the categories.

pdf bib
Midas Loop: A Prioritized Human-in-the-Loop Annotation for Large Scale Multilayer Data
Luke Gessler | Lauren Levine | Amir Zeldes
Proceedings of the 16th Linguistic Annotation Workshop (LAW-XVI) within LREC2022

Large scale annotation of rich multilayer corpus data is expensive and time consuming, motivating approaches that integrate high quality automatic tools with active learning in order to prioritize human labeling of hard cases. A related challenge in such scenarios is the concurrent management of automatically annotated data and human annotated data, particularly where different subsets of the data have been corrected for different types of annotation and with different levels of confidence. In this paper we present [REDACTED], a collaborative, version-controlled online annotation environment for multilayer corpus data which includes integrated provenance and confidence metadata for each piece of information at the document, sentence, token and annotation level. We present a case study on improving annotation quality in an existing multilayer parse bank of English called AMALGUM, focusing on active learning in corpus preprocessing, at the surprisingly challenging level of sentence segmentation. Our results show improvements to state-of-the-art sentence segmentation and a promising workflow for getting “silver” data to approach gold standard quality.