Ledell Wu


2022

pdf bib
Multilingual Autoregressive Entity Linking
Nicola De Cao | Ledell Wu | Kashyap Popat | Mikel Artetxe | Naman Goyal | Mikhail Plekhanov | Luke Zettlemoyer | Nicola Cancedda | Sebastian Riedel | Fabio Petroni
Transactions of the Association for Computational Linguistics, Volume 10

We present mGENRE, a sequence-to- sequence system for the Multilingual Entity Linking (MEL) problem—the task of resolving language-specific mentions to a multilingual Knowledge Base (KB). For a mention in a given language, mGENRE predicts the name of the target entity left-to-right, token-by-token in an autoregressive fashion. The autoregressive formulation allows us to effectively cross-encode mention string and entity names to capture more interactions than the standard dot product between mention and entity vectors. It also enables fast search within a large KB even for mentions that do not appear in mention tables and with no need for large-scale vector indices. While prior MEL works use a single representation for each entity, we match against entity names of as many languages as possible, which allows exploiting language connections between source input and target name. Moreover, in a zero-shot setting on languages with no training data at all, mGENRE treats the target language as a latent variable that is marginalized at prediction time. This leads to over 50% improvements in average accuracy. We show the efficacy of our approach through extensive evaluation including experiments on three popular MEL benchmarks where we establish new state-of-the-art results. Source code available at https://github.com/facebookresearch/GENRE.

2020

pdf bib
Multi-Dimensional Gender Bias Classification
Emily Dinan | Angela Fan | Ledell Wu | Jason Weston | Douwe Kiela | Adina Williams
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Machine learning models are trained to find patterns in data. NLP models can inadvertently learn socially undesirable patterns when training on gender biased text. In this work, we propose a novel, general framework that decomposes gender bias in text along several pragmatic and semantic dimensions: bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker. Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information. In addition, we collect a new, crowdsourced evaluation benchmark. Distinguishing between gender bias along multiple dimensions enables us to train better and more fine-grained gender bias classifiers. We show our classifiers are valuable for a variety of applications, like controlling for gender bias in generative models, detecting gender bias in arbitrary text, and classifying text as offensive based on its genderedness.

pdf bib
Scalable Zero-shot Entity Linking with Dense Entity Retrieval
Ledell Wu | Fabio Petroni | Martin Josifoski | Sebastian Riedel | Luke Zettlemoyer
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

This paper introduces a conceptually simple, scalable, and highly effective BERT-based entity linking model, along with an extensive evaluation of its accuracy-speed trade-off. We present a two-stage zero-shot linking algorithm, where each entity is defined only by a short textual description. The first stage does retrieval in a dense space defined by a bi-encoder that independently embeds the mention context and the entity descriptions. Each candidate is then re-ranked with a cross-encoder, that concatenates the mention and entity text. Experiments demonstrate that this approach is state of the art on recent zero-shot benchmarks (6 point absolute gains) and also on more established non-zero-shot evaluations (e.g. TACKBP-2010), despite its relative simplicity (e.g. no explicit entity embeddings or manually engineered mention tables). We also show that bi-encoder linking is very fast with nearest neighbor search (e.g. linking with 5.9 million candidates in 2 milliseconds), and that much of the accuracy gain from the more expensive cross-encoder can be transferred to the bi-encoder via knowledge distillation. Our code and models are available at https://github.com/facebookresearch/BLINK.

pdf bib
Dense Passage Retrieval for Open-Domain Question Answering
Vladimir Karpukhin | Barlas Oguz | Sewon Min | Patrick Lewis | Ledell Wu | Sergey Edunov | Danqi Chen | Wen-tau Yih
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system greatly by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks.