Lee Tarlin


2020

pdf bib
The 2019 BBN Cross-lingual Information Retrieval System
Le Zhang | Damianos Karakos | William Hartmann | Manaj Srivastava | Lee Tarlin | David Akodes | Sanjay Krishna Gouda | Numra Bathool | Lingjun Zhao | Zhuolin Jiang | Richard Schwartz | John Makhoul
Proceedings of the workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS2020)

In this paper, we describe a cross-lingual information retrieval (CLIR) system that, given a query in English, and a set of audio and text documents in a foreign language, can return a scored list of relevant documents, and present findings in a summary form in English. Foreign audio documents are first transcribed by a state-of-the-art pretrained multilingual speech recognition model that is finetuned to the target language. For text documents, we use multiple multilingual neural machine translation (MT) models to achieve good translation results, especially for low/medium resource languages. The processed documents and queries are then scored using a probabilistic CLIR model that makes use of the probability of translation from GIZA translation tables and scores from a Neural Network Lexical Translation Model (NNLTM). Additionally, advanced score normalization, combination, and thresholding schemes are employed to maximize the Average Query Weighted Value (AQWV) scores. The CLIR output, together with multiple translation renderings, are selected and translated into English snippets via a summarization model. Our turnkey system is language agnostic and can be quickly trained for a new low-resource language in few days.

pdf bib
What Set of Documents to Present to an Analyst?
Richard Schwartz | John Makhoul | Lee Tarlin | Damianos Karakos
Proceedings of the workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS2020)

We describe the human triage scenario envisioned in the Cross-Lingual Information Retrieval (CLIR) problem of the [REDUCT] Program. The overall goal is to maximize the quality of the set of documents that is given to a bilingual analyst, as measured by the AQWV score. The initial set of source documents that are retrieved by the CLIR system is summarized in English and presented to human judges who attempt to remove the irrelevant documents (false alarms); the resulting documents are then presented to the analyst. First, we describe the AQWV performance measure and show that, in our experience, if the acceptance threshold of the CLIR component has been optimized to maximize AQWV, the loss in AQWV due to false alarms is relatively constant across many conditions, which also limits the possible gain that can be achieved by any post filter (such as human judgments) that removes false alarms. Second, we analyze the likely benefits for the triage operation as a function of the initial CLIR AQWV score and the ability of the human judges to remove false alarms without removing relevant documents. Third, we demonstrate that we can increase the benefit for human judgments by combining the human judgment scores with the original document scores returned by the automatic CLIR system.