This paper tackles an emerging and challenging problem of long video temporal grounding (VTG) that localizes video moments related to a natural language (NL) query. Compared with short videos, long videos are also highly demanded but less explored, which brings new challenges in higher inference computation cost and weaker multi-modal alignment. To address these challenges, we propose CONE, an efficient COarse-to-fiNE alignment framework. CONE is a plug-and-play framework on top of existing VTG models to handle long videos through a sliding window mechanism. Specifically, CONE (1) introduces a query-guided window selection strategy to speed up inference, and (2) proposes a coarse-to-fine mechanism via a novel incorporation of contrastive learning to enhance multi-modal alignment for long videos. Extensive experiments on two large-scale long VTG benchmarks consistently show both substantial performance gains (e.g., from 3.13 to 6.87% on MAD) and state-of-the-art results. Analyses also reveal higher efficiency as the query-guided window selection mechanism accelerates inference time by 2x on Ego4D-NLQ and 15x on MAD while keeping SOTA results. Codes have been released at https://github.com/houzhijian/CONE.
In this paper, we introduce CheXOFA, a new pre-trained vision-language model (VLM) for the chest X-ray domain. Our model is initially pre-trained on various multimodal datasets within the general domain before being transferred to the chest X-ray domain. Following a prominent VLM, we unify various domain-specific tasks into a simple sequence-to-sequence schema. It enables the model to effectively learn the required knowledge and skills from limited resources in the domain. Demonstrating superior performance on the benchmark datasets provided by the BioNLP shared task (Delbrouck et al., 2023), our model benefits from its training across multiple tasks and domains. With subtle techniques including ensemble and factual calibration, our system achieves first place on the RadSum23 leaderboard for the hidden test set.
Dense video event captioning aims to generate a sequence of descriptive captions for each event in a long untrimmed video. Video-level context provides important information and facilities the model to generate consistent and less redundant captions between events. In this paper, we introduce a novel Hierarchical Context-aware Network for dense video event captioning (HCN) to capture context from various aspects. In detail, the model leverages local and global context with different mechanisms to jointly learn to generate coherent captions. The local context module performs full interaction between neighbor frames and the global context module selectively attends to previous or future events. According to our extensive experiment on both Youcook2 and Activitynet Captioning datasets, the video-level HCN model outperforms the event-level context-agnostic model by a large margin. The code is available at https://github.com/KirkGuo/HCN.
Generating image captions with user intention is an emerging need. The recently published Localized Narratives dataset takes mouse traces as another input to the image captioning task, which is an intuitive and efficient way for a user to control what to describe in the image. However, how to effectively employ traces to improve generation quality and controllability is still under exploration. This paper aims to solve this problem by proposing a novel model called LoopCAG, which connects Contrastive constraints and Attention Guidance in a Loop manner, engaged explicit spatial and temporal constraints to the generating process. Precisely, each generated sentence is temporally aligned to the corresponding trace sequence through a contrastive learning strategy. Besides, each generated text token is supervised to attend to the correct visual objects under heuristic spatial attention guidance. Comprehensive experimental results demonstrate that our LoopCAG model learns better correspondence among the three modalities (vision, language, and traces) and achieves SOTA performance on trace-controlled image captioning task. Moreover, the controllability and explainability of LoopCAG are validated by analyzing spatial and temporal sensitivity during the generation process.
Watching instructional videos are often used to learn about procedures. Video captioning is one way of automatically collecting such knowledge. However, it provides only an indirect, overall evaluation of multimodal models with no finer-grained quantitative measure of what they have learned. We propose instead, a benchmark of structured procedural knowledge extracted from cooking videos. This work is complementary to existing tasks, but requires models to produce interpretable structured knowledge in the form of verb-argument tuples. Our manually annotated open-vocabulary resource includes 356 instructional cooking videos and 15,523 video clip/sentence-level annotations. Our analysis shows that the proposed task is challenging and standard modeling approaches like unsupervised segmentation, semantic role labeling, and visual action detection perform poorly when forced to predict every action of a procedure in a structured form.
In this paper, we focus on the imbalance issue, which is rarely studied in aspect term extraction and aspect sentiment classification when regarding them as sequence labeling tasks. Besides, previous works usually ignore the interaction between aspect terms when labeling polarities. We propose a GRadient hArmonized and CascadEd labeling model (GRACE) to solve these problems. Specifically, a cascaded labeling module is developed to enhance the interchange between aspect terms and improve the attention of sentiment tokens when labeling sentiment polarities. The polarities sequence is designed to depend on the generated aspect terms labels. To alleviate the imbalance issue, we extend the gradient harmonized mechanism used in object detection to the aspect-based sentiment analysis by adjusting the weight of each label dynamically. The proposed GRACE adopts a post-pretraining BERT as its backbone. Experimental results demonstrate that the proposed model achieves consistency improvement on multiple benchmark datasets and generates state-of-the-art results.
Understanding narrated instructional videos is important for both research and real-world web applications. Motivated by video dense captioning, we propose a model to generate procedure captions from narrated instructional videos which are a sequence of step-wise clips with description. Previous works on video dense captioning learn video segments and generate captions without considering transcripts. We argue that transcripts in narrated instructional videos can enhance video representation by providing fine-grained complimentary and semantic textual information. In this paper, we introduce a framework to (1) extract procedures by a cross-modality module, which fuses video content with the entire transcript; and (2) generate captions by encoding video frames as well as a snippet of transcripts within each extracted procedure. Experiments show that our model can achieve state-of-the-art performance in procedure extraction and captioning, and the ablation studies demonstrate that both the video frames and the transcripts are important for the task.