Leon Weber


pdf bib
BEEDS: Large-Scale Biomedical Event Extraction using Distant Supervision and Question Answering
Xing David Wang | Ulf Leser | Leon Weber
Proceedings of the 21st Workshop on Biomedical Language Processing

Automatic extraction of event structures from text is a promising way to extract important facts from the evergrowing amount of biomedical literature. We propose BEEDS, a new approach on how to mine event structures from PubMed based on a question-answering paradigm. Using a three-step pipeline comprising a document retriever, a document reader, and an entity normalizer, BEEDS is able to fully automatically extract event triples involving a query protein or gene and to store this information directly in a knowledge base. BEEDS applies a transformer-based architecture for event extraction and uses distant supervision to augment the scarce training data in event mining. In a knowledge base population setting, it outperforms a strong baseline in finding post-translational modification events consisting of enzyme-substrate-site triples while achieving competitive results in extracting binary relations consisting of protein-protein and protein-site interactions.

pdf bib
Dataset Debt in Biomedical Language Modeling
Jason Fries | Natasha Seelam | Gabriel Altay | Leon Weber | Myungsun Kang | Debajyoti Datta | Ruisi Su | Samuele Garda | Bo Wang | Simon Ott | Matthias Samwald | Wojciech Kusa
Proceedings of BigScience Episode #5 -- Workshop on Challenges & Perspectives in Creating Large Language Models

Large-scale language modeling and natural language prompting have demonstrated exciting capabilities for few and zero shot learning in NLP. However, translating these successes to specialized domains such as biomedicine remains challenging, due in part to biomedical NLP’s significant dataset debt – the technical costs associated with data that are not consistently documented or easily incorporated into popular machine learning frameworks at scale. To assess this debt, we crowdsourced curation of datasheets for 167 biomedical datasets. We find that only 13% of datasets are available via programmatic access and 30% lack any documentation on licensing and permitted reuse. Our dataset catalog is available at: https://tinyurl.com/bigbio22.


pdf bib
WBI at MEDIQA 2021: Summarizing Consumer Health Questions with Generative Transformers
Mario Sänger | Leon Weber | Ulf Leser
Proceedings of the 20th Workshop on Biomedical Language Processing

This paper describes our contribution for the MEDIQA-2021 Task 1 question summarization competition. We model the task as conditional generation problem. Our concrete pipeline performs a finetuning of the large pretrained generative transformers PEGASUS (Zhang et al.,2020a) and BART (Lewis et al.,2020). We used the resulting models as strong baselines and experimented with (i) integrating structured knowledge via entity embeddings, (ii) ensembling multiple generative models with the generator-discriminator framework and (iii) disentangling summarization and interrogative prediction to achieve further improvements.Our best performing model, a fine-tuned vanilla PEGASUS, reached the second place in the competition with an ROUGE-2-F1 score of 15.99. We observed that all of our additional measures hurt performance (up to 5.2 pp) on the official test set. In course of a post-hoc experimental analysis which uses a larger validation set results indicate slight performance improvements through the proposed extensions. However, further analysis is need to provide stronger evidence.

pdf bib
Extend, don’t rebuild: Phrasing conditional graph modification as autoregressive sequence labelling
Leon Weber | Jannes Münchmeyer | Samuele Garda | Ulf Leser
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Deriving and modifying graphs from natural language text has become a versatile basis technology for information extraction with applications in many subfields, such as semantic parsing or knowledge graph construction. A recent work used this technique for modifying scene graphs (He et al. 2020), by first encoding the original graph and then generating the modified one based on this encoding. In this work, we show that we can considerably increase performance on this problem by phrasing it as graph extension instead of graph generation. We propose the first model for the resulting graph extension problem based on autoregressive sequence labelling. On three scene graph modification data sets, this formulation leads to improvements in accuracy over the state-of-the-art between 13 and 24 percentage points. Furthermore, we introduce a novel data set from the biomedical domain which has much larger linguistic variability and more complex graphs than the scene graph modification data sets. For this data set, the state-of-the art fails to generalize, while our model can produce meaningful predictions.


pdf bib
Biomedical Event Extraction as Multi-turn Question Answering
Xing David Wang | Leon Weber | Ulf Leser
Proceedings of the 11th International Workshop on Health Text Mining and Information Analysis

Biomedical event extraction from natural text is a challenging task as it searches for complex and often nested structures describing specific relationships between multiple molecular entities, such as genes, proteins, or cellular components. It usually is implemented by a complex pipeline of individual tools to solve the different relation extraction subtasks. We present an alternative approach where the detection of relationships between entities is described uniformly as questions, which are iteratively answered by a question answering (QA) system based on the domain-specific language model SciBERT. This model outperforms two strong baselines in two biomedical event extraction corpora in a Knowledge Base Population setting, and also achieves competitive performance in BioNLP challenge evaluation settings.


pdf bib
NLProlog: Reasoning with Weak Unification for Question Answering in Natural Language
Leon Weber | Pasquale Minervini | Jannes Münchmeyer | Ulf Leser | Tim Rocktäschel
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Rule-based models are attractive for various tasks because they inherently lead to interpretable and explainable decisions and can easily incorporate prior knowledge. However, such systems are difficult to apply to problems involving natural language, due to its large linguistic variability. In contrast, neural models can cope very well with ambiguity by learning distributed representations of words and their composition from data, but lead to models that are difficult to interpret. In this paper, we describe a model combining neural networks with logic programming in a novel manner for solving multi-hop reasoning tasks over natural language. Specifically, we propose to use an Prolog prover which we extend to utilize a similarity function over pretrained sentence encoders. We fine-tune the representations for the similarity function via backpropagation. This leads to a system that can apply rule-based reasoning to natural language, and induce domain-specific natural language rules from training data. We evaluate the proposed system on two different question answering tasks, showing that it outperforms two baselines – BiDAF (Seo et al., 2016a) and FastQA( Weissenborn et al., 2017) on a subset of the WikiHop corpus and achieves competitive results on the MedHop data set (Welbl et al., 2017).