Language models struggle with handling numerical data and performing arithmetic operations. We hypothesize that this limitation can be partially attributed to non-intuitive textual numbers representation. When a digit is read or generated by a causal language model it does not know its place value (e.g. thousands vs. hundreds) until the entire number is processed. To address this issue, we propose a simple adjustment to how numbers are represented by including the count of digits before each number. For instance, instead of “42”, we suggest using “2:42” as the new format. This approach, which we term NumeroLogic, offers an added advantage in number generation by serving as a Chain of Thought (CoT). By requiring the model to consider the number of digits first, it enhances the reasoning process before generating the actual number. We use arithmetic tasks to demonstrate the effectiveness of the NumeroLogic formatting. We further demonstrate NumeroLogic applicability to general natural language modeling, improving language understanding performance in the MMLU benchmark.
Recent works have demonstrated the effectiveness of self-alignment in which a large language model is aligned to follow general instructions using instructional data generated from the model itself starting from a handful of human-written seeds. Instead of general alignment, in this work, we focus on self-alignment for expert domain specialization (e.g., biomedicine, finance). As a preliminary, we quantitively show the marginal effect that generic instruction-following training has on downstream expert domains’ performance. To remedy this, we propose self-specialization - allowing for effective model specialization while achieving cross-task generalization by leveraging only a few labeled seeds. Self-specialization offers a data- and parameter-efficient way of “carving out” an expert model out of a generalist pre-trained LLM. Exploring a variety of popular open large models as a base for specialization, our experimental results in both biomedical and financial domains show that our self-specialized models outperform their base models by a large margin, and even larger models that are generally instruction-tuned or that have been adapted to the target domain by other means.
Vision and language models (VLMs) have demonstrated remarkable zero-shot (ZS) performance in a variety of tasks. However, recent works have shown that even the best VLMs struggle to capture aspects of compositional scene understanding, such as object attributes, relations, and action states. In contrast, obtaining structured annotations, such as scene graphs (SGs), that could improve these models is time-consuming and costly, and thus cannot be used on a large scale. Here we ask whether small SG datasets can provide sufficient information for enhancing structured understanding of pretrained VLMs. We show that it is indeed possible to improve VLMs when learning from SGs by integrating components that incorporate structured information into both visual and textual representations. For the visual side, we incorporate a special “SG Component” in the image transformer trained to predict SG information, while for the textual side, we utilize SGs to generate fine-grained captions that highlight different compositional aspects of the scene. Our method improves the performance of several popular VLMs on multiple VL datasets with only a mild degradation in ZS capabilities.