Large language models (LLMs) can explain their predictions through post-hoc or Chain-of-Thought (CoT) explanations. But an LLM could make up reasonably sounding explanations that are unfaithful to its underlying reasoning. Recent work has designed tests that aim to judge the faithfulness of post-hoc or CoT explanations. In this work we argue that these faithfulness tests do not measure faithfulness to the models’ inner workings – but rather their self-consistency at output level.Our contributions are three-fold: i) We clarify the status of faithfulness tests in view of model explainability, characterising them as self-consistency tests instead. This assessment we underline by ii) constructing a Comparative Consistency Bank for self-consistency tests that for the first time compares existing tests on a common suite of 11 open LLMs and 5 tasks – including iii) our new self-consistency measure CC-SHAP. CC-SHAP is a fine-grained measure (not a test) of LLM self-consistency. It compares how a model’s input contributes to the predicted answer and to generating the explanation. Our fine-grained CC-SHAP metric allows us iii) to compare LLM behaviour when making predictions and to analyse the effect of other consistency tests at a deeper level, which takes us one step further towards measuring faithfulness by bringing us closer to the internals of the model than strictly surface output-oriented tests.
Vision and language models (VL) are known to exploit unrobust indicators in individual modalities (e.g., introduced by distributional biases) instead of focusing on relevant information in each modality. That a unimodal model achieves similar accuracy on a VL task to a multimodal one, indicates that so-called unimodal collapse occurred. However, accuracy-based tests fail to detect e.g., when the model prediction is wrong, while the model used relevant information from a modality. Instead, we propose MM-SHAP, a performance-agnostic multimodality score based on Shapley values that reliably quantifies in which proportions a multimodal model uses individual modalities. We apply MM-SHAP in two ways: (1) to compare models for their average degree of multimodality, and (2) to measure for individual models the contribution of individual modalities for different tasks and datasets. Experiments with six VL models – LXMERT, CLIP and four ALBEF variants – on four VL tasks highlight that unimodal collapse can occur to different degrees and in different directions, contradicting the wide-spread assumption that unimodal collapse is one-sided. Based on our results, we recommend MM-SHAP for analysing multimodal tasks, to diagnose and guide progress towards multimodal integration. Code available at https://github.com/Heidelberg-NLP/MM-SHAP.
We propose VALSE (Vision And Language Structured Evaluation), a novel benchmark designed for testing general-purpose pretrained vision and language (V&L) models for their visio-linguistic grounding capabilities on specific linguistic phenomena. VALSE offers a suite of six tests covering various linguistic constructs. Solving these requires models to ground linguistic phenomena in the visual modality, allowing more fine-grained evaluations than hitherto possible. We build VALSE using methods that support the construction of valid foils, and report results from evaluating five widely-used V&L models. Our experiments suggest that current models have considerable difficulty addressing most phenomena. Hence, we expect VALSE to serve as an important benchmark to measure future progress of pretrained V&L models from a linguistic perspective, complementing the canonical task-centred V&L evaluations.
Large-scale pretraining is fast becoming the norm in Vision-Language (VL) modeling. However, prevailing VL approaches are limited by the requirement for labeled data and the use of complex multi-step pretraining objectives. We present MAGMA - a simple method for augmenting generative language models with additional modalities using adapter-based finetuning. Building on Frozen, we train a series of VL models that autoregressively generate text from arbitrary combinations of visual and textual input. The pretraining is entirely end-to-end using a single language modeling objective, simplifying optimization compared to previous approaches. Importantly, the language model weights remain unchanged during training, allowing for transfer of encyclopedic knowledge and in-context learning abilities from language pretraining. MAGMA outperforms Frozen on open-ended generative tasks, achieving state of the art results on the OKVQA benchmark and competitive results on a range of other popular VL benchmarks, while pretraining on 0.2 % of the number of samples used to train SimVLM.
Phrase grounding (PG) is a multimodal task that grounds language in images. PG systems are evaluated on well-known benchmarks, using Intersection over Union (IoU) as evaluation metric. This work highlights a disconcerting bias in the evaluation of grounded plural phrases, which arises from representing sets of objects as a union box covering all component bounding boxes, in conjunction with the IoU metric. We detect, analyze and quantify an evaluation bias in the grounding of plural phrases and define a novel metric, c-IoU, based on a union box’s component boxes. We experimentally show that our new metric greatly alleviates this bias and recommend using it for fairer evaluation of plural phrases in PG tasks.
The last years have shown rapid developments in the field of multimodal machine learning, combining e.g., vision, text or speech. In this position paper we explain how the field uses outdated definitions of multimodality that prove unfit for the machine learning era. We propose a new task-relative definition of (multi)modality in the context of multimodal machine learning that focuses on representations and information that are relevant for a given machine learning task. With our new definition of multimodality we aim to provide a missing foundation for multimodal research, an important component of language grounding and a crucial milestone towards NLU.
We investigate the reasoning ability of pretrained vision and language (V&L) models in two tasks that require multimodal integration: (1) discriminating a correct image-sentence pair from an incorrect one, and (2) counting entities in an image. We evaluate three pretrained V&L models on these tasks: ViLBERT, ViLBERT 12-in-1 and LXMERT, in zero-shot and finetuned settings. Our results show that models solve task (1) very well, as expected, since all models are pretrained on task (1). However, none of the pretrained V&L models is able to adequately solve task (2), our counting probe, and they cannot generalise to out-of-distribution quantities. We propose a number of explanations for these findings: LXMERT (and to some extent ViLBERT 12-in-1) show some evidence of catastrophic forgetting on task (1). Concerning our results on the counting probe, we find evidence that all models are impacted by dataset bias, and also fail to individuate entities in the visual input. While a selling point of pretrained V&L models is their ability to solve complex tasks, our findings suggest that understanding their reasoning and grounding capabilities requires more targeted investigations on specific phenomena.
Different metrics have been proposed to compare Abstract Meaning Representation (AMR) graphs. The canonical Smatch metric (Cai and Knight, 2013) aligns the variables of two graphs and assesses triple matches. The recent SemBleu metric (Song and Gildea, 2019) is based on the machine-translation metric Bleu (Papineni et al., 2002) and increases computational efficiency by ablating the variable-alignment. In this paper, i) we establish criteria that enable researchers to perform a principled assessment of metrics comparing meaning representations like AMR; ii) we undertake a thorough analysis of Smatch and SemBleu where we show that the latter exhibits some undesirable properties. For example, it does not conform to the identity of indiscernibles rule and introduces biases that are hard to control; and iii) we propose a novel metric S2 match that is more benevolent to only very slight meaning deviations and targets the fulfilment of all established criteria. We assess its suitability and show its advantages over Smatch and SemBleu.