AI-generated text detection has attracted increasing attention as powerful language models approach human-level generation. Limited work is devoted to detecting (partially) AI-paraphrased texts. However, AI paraphrasing is commonly employed in various application scenarios for text refinement and diversity. To this end, we propose a novel detection framework, paraphrased text span detection (PTD), aiming to identify paraphrased text spans within a text. Different from text-level detection, PTD takes in the full text and assigns each of the sentences with a score indicating the paraphrasing degree. We construct a dedicated dataset, PASTED, for paraphrased text span detection. Both in-distribution and out-of-distribution results demonstrate the effectiveness of PTD models in identifying AI-paraphrased text spans. Statistical and model analysis explains the crucial role of the surrounding context of the paraphrased text spans. Extensive experiments show that PTD models can generalize to versatile paraphrasing prompts as well as multiple paraphrased text spans.
Recent studies have illuminated the promising capabilities of large language models (LLMs) in handling long texts. However, their performance in machine translation (MT) of long documents remains underexplored. This paper aims to shed light on how LLMs navigate this complex task, offering a comprehensive evaluation of their capabilities and limitations in long-text MT. First, we collect and construct an instruction-based benchmark dataset, specifically designed for the finetuning and evaluation of LLMs, encompassing multilingual, multi-domain, and document-level parallel data. Second, we conduct a comprehensive comparison between MT and LLM models concerning document-level translation. Our analysis uncovers that LLMs exhibit shortcomings in long-text domains, and their performance diminishes as document size escalates. By exploiting various extrapolation strategies, we enhance the capacity of LLMs to translate longer texts. We release data, code, and models at https://github.com/longyuewangdcu/Document-MT-LLM.
Large language models (LLMs) have achieved human-level text generation, emphasizing the need for effective deepfake text detection to mitigate risks like the spread of fake news and plagiarism. Existing research has been constrained by evaluating detection methods o specific domains or particular language models. In practical scenarios, however, the detector faces texts from various domains or LLMs without knowing their sources. To this end, we build a comprehensive testbed by gathering texts from diverse human writings and deepfake texts generated by different LLMs. Empirical results on mainstream detection methods demonstrate the difficulties associated with detecting deepfake text in a wide-ranging testbed, particularly in out-of-distribution scenarios. Such difficulties align with the diminishing linguistic differences between the two text sources. Despite challenges, the top-performing detector can identify 84.12% out-of-domain texts generated by a new LLM, indicating the feasibility for application scenarios.
Large language models (LLMs) suffer from catastrophic forgetting during continual learning. Conventional rehearsal-based methods rely on previous training data to retain the model’s ability, which may not be feasible in real-world applications. When conducting continual learning based on a publicly-released LLM checkpoint, the availability of the original training data may be non-existent. To address this challenge, we propose a framework called Self-Synthesized Rehearsal (SSR) that uses the LLM to generate synthetic instances for rehearsal. Concretely, we first employ the base LLM for in-context learning to generate synthetic instances. Subsequently, we utilize the latest LLM to refine the instance outputs based on the synthetic inputs, preserving its acquired ability. Finally, we select diverse high-quality synthetic instances for rehearsal in future stages. Experimental results demonstrate that SSR achieves superior or comparable performance compared to conventional rehearsal-based approaches while being more data-efficient. Besides, SSR effectively preserves the generalization capabilities of LLMs in general domains.
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks. However, there are increasing debates regarding whether these models truly understand and apply mathematical knowledge or merely rely on shortcuts for mathematical reasoning. One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly. This motivates us to evaluate the robustness of LLMs’ math reasoning capability by testing a wide range of question variations. We introduce the adversarial grade school math (GSM-Plus) dataset, an extension of GSM8K augmented with various mathematical perturbations. Our experiments on 25 LLMs and 4 prompting techniques show that while LLMs exhibit different levels of math reasoning abilities, their performances are far from robust. In particular, even for problems that have been solved in GSM8K, LLMs can make mistakes when new statements are added or the question targets are altered. We also explore whether more robust performance can be achieved by composing existing prompting methods, in which we try an iterative method that generates and verifies each intermediate thought based on its reasoning goal and calculation result.
Sample-and-rank is a key decoding strategy for modern generation-based dialogue systems. It helps achieve diverse and high-quality responses by selecting an answer from a small pool of generated candidates. The current state-of-the-art ranking methods mainly use an encoding paradigm called Cross-Encoder, which separately encodes each context-candidate pair and ranks the candidates according to their fitness scores. However, Cross-Encoder repeatedly encodes the same lengthy context for each candidate, resulting in high computational costs. Poly-Encoder addresses the above problems by reducing the interaction between context and candidates, but with a price of performance drop. In this work, we develop a new paradigm called Uni-Encoder, that keeps the full attention over each pair as in Cross-Encoder while only encoding the context once, as in Poly-Encoder. Uni-Encoder encodes all the candidates with the context in one forward pass. We use the same positional embedding for all candidates to ensure they are treated equally and design a new attention mechanism to avoid confusion. Our Uni-Encoder can simulate other ranking paradigms using different attention and response concatenation methods. Extensive experiments show that our proposed paradigm achieves new state-of-the-art results on four benchmark datasets with high computational efficiency. For instance, it improves R10@1 by 2.9% with an approximately 4X faster inference speed on the Ubuntu V2 dataset.
Generative Pre-trained Transformer 4 (GPT-4) demonstrates impressive chain-of-thought reasoning ability. Recent work on self-instruction tuning, such as Alpaca, has focused on enhancing the general proficiency of models. These instructions enable the model to achieve performance comparable to GPT-3.5 on general tasks like open-domain text generation and paraphrasing. However, they fall short of helping the model handle complex reasoning tasks. To bridge the gap, this paper presents LogiCoT, a new instruction-tuning dataset for Logical Chain-of-Thought reasoning with GPT-4. We elaborate on the process of harvesting instructions for prompting GPT-4 to generate chain-of-thought rationales. LogiCoT serves as an instruction set for teaching models of logical reasoning and elicits general reasoning skills.
Recent work has witnessed a paradigm shift from Seq2Seq to Seq2Edit in the field of text editing, with the aim of addressing the slow autoregressive inference problem posed by the former. Despite promising results, Seq2Edit approaches still face several challenges such as inflexibility in generation and difficulty in generalizing to other languages. In this work, we propose a novel non-autoregressive text editing method to circumvent the above issues, by modeling the edit process with latent CTC alignments. We make a crucial extension to CTC by introducing the copy operation into the edit space, thus enabling more efficient management of textual overlap in editing. We conduct extensive experiments on GEC and sentence fusion tasks, showing that our proposed method significantly outperforms existing Seq2Edit models and achieves similar or even better results than Seq2Seq with over 4× speedup. Moreover, it demonstrates good generalizability on German and Russian. In-depth analyses reveal the strengths of our method in terms of the robustness under various scenarios and generating fluent and flexible outputs.
Relation extraction is a crucial task in natural language processing (NLP) and information retrieval (IR). Previous work on event relation extraction mainly focuses on hierarchical, temporal and causal relations. Such relationships consider two events to be independent in terms of syntax and semantics, but they fail to recognize the interdependence between events. To bridge this gap, we introduce a human-annotated Event Dependency Relation dataset (EDeR). The annotation is done on a sample of documents from the OntoNotes dataset, which has the additional benefit that it integrates with existing, orthogonal, annotations of this dataset. We investigate baseline approaches for EDeR’s event dependency relation prediction. We show that recognizing such event dependency relations can further benefit critical NLP tasks, including semantic role labelling and co-reference resolution.
Grammatical Error Correction (GEC) systems play a vital role in assisting people with their daily writing tasks. However, users may sometimes come across a GEC system that initially performs well but fails to correct errors when the inputs are slightly modified. To ensure an ideal user experience, a reliable GEC system should have the ability to provide consistent and accurate suggestions when encountering irrelevant context perturbations, which we refer to as context robustness. In this paper, we introduce RobustGEC, a benchmark designed to evaluate the context robustness of GEC systems. RobustGEC comprises 5,000 GEC cases, each with one original error-correct sentence pair and five variants carefully devised by human annotators. Utilizing RobustGEC, we reveal that state-of-the-art GEC systems still lack sufficient robustness against context perturbations. Moreover, we propose a simple yet effective method for remitting this issue.
Grammatical error correction systems improve written communication by detecting and correcting language mistakes. To help language learners better understand why the GEC system makes a certain correction, the causes of errors (evidence words) and the corresponding error types are two key factors. To enhance GEC systems with explanations, we introduce EXPECT, a large dataset annotated with evidence words and grammatical error types. We propose several baselines and anlysis to understand this task. Furthermore, human evaluation verifies our explainable GEC system’s explanations can assist second-language learners in determining whether to accept a correction suggestion and in understanding the associated grammar rule.
Most existing text generation models follow the sequence-to-sequence paradigm. Generative Grammar suggests that humans generate natural language texts by learning language grammar. We propose a syntax-guided generation schema, which generates the sequence guided by a constituency parse tree in a top-down direction. The decoding process can be decomposed into two parts: (1) predicting the infilling texts for each constituent in the lexicalized syntax context given the source sentence; (2) mapping and expanding each constituent to construct the next-level syntax context. Accordingly, we propose a structural beam search method to find possible syntax structures hierarchically. Experiments on paraphrase generation and machine translation show that the proposed method outperforms autoregressive baselines, while also demonstrating effectiveness in terms of interpretability, controllability, and diversity.
Writing assistants are valuable tools that can help writers improve their writing skills. We introduce Effidit (Efficient and Intelligent Editing), a digital writing assistant that facilitates users to write higher-quality text more efficiently through the use of Artificial Intelligence (AI) and Natural Language Processing (NLP) technologies. We significantly expand the capacities of a writing assistantby providing functions in three modules: text completion, hint recommendation, and writing refinement. Based on the above efforts, Effidit can efficiently assist users in creating their own text. Effidit has been deployed to several Tencent products and publicly released at https://effidit.qq.com/.
Despite low latency, non-autoregressive machine translation (NAT) suffers severe performance deterioration due to the naive independence assumption. This assumption is further strengthened by cross-entropy loss, which encourages a strict match between the hypothesis and the reference token by token. To alleviate this issue, we propose multi-granularity optimization for NAT, which collects model behaviours on translation segments of various granularities and integrates feedback for backpropagation. Experiments on four WMT benchmarks show that the proposed method significantly outperforms the baseline models trained with cross-entropy loss, and achieves the best performance on WMT’16 En⇔Ro and highly competitive results on WMT’14 En⇔De for fully non-autoregressive translation.
Abstract Meaning Representation (AMR) parsing aims to predict an AMR graph from textual input. Recently, there has been notable growth in AMR parsing performance. However, most existing work focuses on improving the performance in the specific domain, ignoring the potential domain dependence of AMR parsing systems. To address this, we extensively evaluate five representative AMR parsers on five domains and analyze challenges to cross-domain AMR parsing. We observe that challenges to cross-domain AMR parsing mainly arise from the distribution shift of words and AMR concepts. Based on our observation, we investigate two approaches to reduce the domain distribution divergence of text and AMR features, respectively. Experimental results on two out-of-domain test sets show the superiority of our method.
Neural constituency parsers have reached practical performance on news-domain benchmarks. However, their generalization ability to other domains remains weak. Existing findings on cross-domain constituency parsing are only made on a limited number of domains. Tracking this, we manually annotate a high-quality constituency treebank containing five domains. We analyze challenges to open-domain constituency parsing using a set of linguistic features on various strong constituency parsers. Primarily, we find that 1) BERT significantly increases parsers’ cross-domain performance by reducing their sensitivity on the domain-variant features.2) Compared with single metrics such as unigram distribution and OOV rate, challenges to open-domain constituency parsing arise from complex features, including cross-domain lexical and constituent structure variations.
Thanks to the strong representation power of neural encoders, neural chart-based parsers have achieved highly competitive performance by using local features. Recently, it has been shown that non-local features in CRF structures lead to improvements. In this paper, we investigate injecting non-local features into the training process of a local span-based parser, by predicting constituent n-gram non-local patterns and ensuring consistency between non-local patterns and local constituents. Results show that our simple method gives better results than the self-attentive parser on both PTB and CTB. Besides, our method achieves state-of-the-art BERT-based performance on PTB (95.92 F1) and strong performance on CTB (92.31 F1). Our parser also outperforms the self-attentive parser in multi-lingual and zero-shot cross-domain settings.
Few-shot Named Entity Recognition (NER) is imperative for entity tagging in limited resource domains and thus received proper attention in recent years. Existing approaches for few-shot NER are evaluated mainly under in-domain settings. In contrast, little is known about how these inherently faithful models perform in cross-domain NER using a few labeled in-domain examples. This paper proposes a two-step rationale-centric data augmentation method to improve the model’s generalization ability. Results on several datasets show that our model-agnostic method significantly improves the performance of cross-domain NER tasks compared to previous state-of-the-art methods compared to the counterfactual data augmentation and prompt-tuning methods.
Although pre-training models have achieved great success in dialogue generation, their performance drops dramatically when the input contains an entity that does not appear in pre-training and fine-tuning datasets (unseen entity). To address this issue, existing methods leverage an external knowledge base to generate appropriate responses. In real-world practical, the entity may not be included by the knowledge base or suffer from the precision of knowledge retrieval. To deal with this problem, instead of introducing knowledge base as the input, we force the model to learn a better semantic representation by predicting the information in the knowledge base, only based on the input context. Specifically, with the help of a knowledge base, we introduce two auxiliary training objectives: 1) Interpret Masked Word, which conjectures the meaning of the masked entity given the context; 2) Hypernym Generation, which predicts the hypernym of the entity based on the context. Experiment results on two dialogue corpus verify the effectiveness of our methods under both knowledge available and unavailable settings.
Aspect category sentiment analysis has attracted increasing research attention. The dominant methods make use of pre-trained language models by learning effective aspect category-specific representations, and adding specific output layers to its pre-trained representation. We consider a more direct way of making use of pre-trained language models, by casting the ACSA tasks into natural language generation tasks, using natural language sentences to represent the output. Our method allows more direct use of pre-trained knowledge in seq2seq language models by directly following the task setting during pre-training. Experiments on several benchmarks show that our method gives the best reported results, having large advantages in few-shot and zero-shot settings.
Sentiment analysis provides a useful overview of customer review contents. Many review websites allow a user to enter a summary in addition to a full review. Intuitively, summary information may give additional benefit for review sentiment analysis. In this paper, we conduct a study to exploit methods for better use of summary information. We start by finding out that the sentimental signal distribution of a review and that of its corresponding summary are in fact complementary to each other. We thus explore various architectures to better guide the interactions between the two and propose a hierarchically-refined review-centric attention model. Empirical results show that our review-centric model can make better use of user-written summaries for review sentiment analysis, and is also more effective compared to existing methods when the user summary is replaced with summary generated by an automatic summarization system.
Contextualized representations give significantly improved results for a wide range of NLP tasks. Much work has been dedicated to analyzing the features captured by representative models such as BERT. Existing work finds that syntactic, semantic and word sense knowledge are encoded in BERT. However, little work has investigated word features for character languages such as Chinese. We investigate Chinese BERT using both attention weight distribution statistics and probing tasks, finding that (1) word information is captured by BERT; (2) word-level features are mostly in the middle representation layers; (3) downstream tasks make different use of word features in BERT, with POS tagging and chunking relying the most on word features, and natural language inference relying the least on such features.
Non-task oriented dialogue systems have achieved great success in recent years due to largely accessible conversation data and the development of deep learning techniques. Given a context, current systems are able to yield a relevant and fluent response, but sometimes make logical mistakes because of weak reasoning capabilities. To facilitate the conversation reasoning research, we introduce MuTual, a novel dataset for Multi-Turn dialogue Reasoning, consisting of 8,860 manually annotated dialogues based on Chinese student English listening comprehension exams. Compared to previous benchmarks for non-task oriented dialogue systems, MuTual is much more challenging since it requires a model that be able to handle various reasoning problems. Empirical results show that state-of-the-art methods only reach 71%, which is far behind human performance of 94%, indicating that there is ample room for improving reasoning ability.
Deep learning has led to significant improvement in text summarization with various methods investigated and improved ROUGE scores reported over the years. However, gaps still exist between summaries produced by automatic summarizers and human professionals. Aiming to gain more understanding of summarization systems with respect to their strengths and limits on a fine-grained syntactic and semantic level, we consult the Multidimensional Quality Metric (MQM) and quantify 8 major sources of errors on 10 representative summarization models manually. Primarily, we find that 1) under similar settings, extractive summarizers are in general better than their abstractive counterparts thanks to strength in faithfulness and factual-consistency; 2) milestone techniques such as copy, coverage and hybrid extractive/abstractive methods do bring specific improvements but also demonstrate limitations; 3) pre-training techniques, and in particular sequence-to-sequence pre-training, are highly effective for improving text summarization, with BART giving the best results.
CRF has been used as a powerful model for statistical sequence labeling. For neural sequence labeling, however, BiLSTM-CRF does not always lead to better results compared with BiLSTM-softmax local classification. This can be because the simple Markov label transition model of CRF does not give much information gain over strong neural encoding. For better representing label sequences, we investigate a hierarchically-refined label attention network, which explicitly leverages label embeddings and captures potential long-term label dependency by giving each word incrementally refined label distributions with hierarchical attention. Results on POS tagging, NER and CCG supertagging show that the proposed model not only improves the overall tagging accuracy with similar number of parameters, but also significantly speeds up the training and testing compared to BiLSTM-CRF.