Liam Dugan


pdf bib
A Feasibility Study of Answer-Agnostic Question Generation for Education
Liam Dugan | Eleni Miltsakaki | Shriyash Upadhyay | Etan Ginsberg | Hannah Gonzalez | DaHyeon Choi | Chuning Yuan | Chris Callison-Burch
Findings of the Association for Computational Linguistics: ACL 2022

We conduct a feasibility study into the applicability of answer-agnostic question generation models to textbook passages. We show that a significant portion of errors in such systems arise from asking irrelevant or un-interpretable questions and that such errors can be ameliorated by providing summarized input. We find that giving these models human-written summaries instead of the original text results in a significant increase in acceptability of generated questions (33% 83%) as determined by expert annotators. We also find that, in the absence of human-written summaries, automatic summarization can serve as a good middle ground.

pdf bib
The Case for a Single Model that can Both Generate Continuations and Fill-in-the-Blank
Daphne Ippolito | Liam Dugan | Emily Reif | Ann Yuan | Andy Coenen | Chris Callison-Burch
Findings of the Association for Computational Linguistics: NAACL 2022

The task of inserting text into a specified position in a passage, known as fill in the blank (FitB), is useful for a variety of applications where writers interact with a natural language generation (NLG) system to craft text. While previous work has tackled this problem with models trained specifically to do fill in the blank, a more useful model is one that can effectively perform _both_ FitB and continuation tasks. In this work, we evaluate the feasibility of using a single model to do both tasks. We show that models pre-trained with a FitB-style objective are capable of both tasks, while models pre-trained for continuation are not. Finally, we show how these models can be easily finetuned to allow for fine-grained control over the length and word choice of the generation.


pdf bib
RoFT: A Tool for Evaluating Human Detection of Machine-Generated Text
Liam Dugan | Daphne Ippolito | Arun Kirubarajan | Chris Callison-Burch
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

In recent years, large neural networks for natural language generation (NLG) have made leaps and bounds in their ability to generate fluent text. However, the tasks of evaluating quality differences between NLG systems and understanding how humans perceive the generated text remain both crucial and difficult. In this system demonstration, we present Real or Fake Text (RoFT), a website that tackles both of these challenges by inviting users to try their hand at detecting machine-generated text in a variety of domains. We introduce a novel evaluation task based on detecting the boundary at which a text passage that starts off human-written transitions to being machine-generated. We show preliminary results of using RoFT to evaluate detection of machine-generated news articles.