Liang Feng
2024
AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations
Zhicheng Yang
|
Yinya Huang
|
Jing Xiong
|
Liang Feng
|
Xiaodan Liang
|
Yiwei Wang
|
Jing Tang
Findings of the Association for Computational Linguistics: EMNLP 2024
Large Language Models prompting, such as using in-context demonstrations, is a mainstream technique for invoking LLMs to perform high-performance and solid complex reasoning (e.g., mathematical reasoning, commonsense reasoning), and has the potential for further human-machine collaborative scientific findings. However, current LLMs are delicate and elusive in prompt words and styles. And there is an unseen gap between LLM understanding and human-written prompts. This paper introduces AlignedCoT, an LLM-acquainted prompting technique that includes proficient “native-speaking” in in-context learning for the LLMs. Specifically, it achieves consistent and correct step-wise prompts in zero-shot scenarios by progressively probing, refining, and formatting the LLM chain of thoughts so that free from handcrafted few-shot demonstrations while maintaining the prompt quality. We conduct experiments on mathematical reasoning and commonsense reasoning. We find that LLMs with AlignedCoT perform significantly superior to them with human-crafted demonstrations. We further apply AlignedCoT for rewriting the GSM8k training set, resulting in a GSM8k-Align dataset. We observe its benefits for retrieval augmented generation.
Search
Fix data
Co-authors
- Yinya Huang 1
- Xiaodan Liang 1
- Jing Tang 1
- Yiwei Wang 1
- Jing Xiong 1
- show all...