Liang Li


pdf bib
Graph-to-Text Generation with Dynamic Structure Pruning
Liang Li | Ruiying Geng | Bowen Li | Can Ma | Yinliang Yue | Binhua Li | Yongbin Li
Proceedings of the 29th International Conference on Computational Linguistics

Most graph-to-text works are built on the encoder-decoder framework with cross-attention mechanism. Recent studies have shown that explicitly modeling the input graph structure can significantly improve the performance. However, the vanilla structural encoder cannot capture all specialized information in a single forward pass for all decoding steps, resulting in inaccurate semantic representations. Meanwhile, the input graph is flatted as an unordered sequence in the cross attention, ignoring the original graph structure. As a result, the obtained input graph context vector in the decoder may be flawed. To address these issues, we propose a Structure-Aware Cross-Attention (SACA) mechanism to re-encode the input graph representation conditioning on the newly generated context at each decoding step in a structure aware manner. We further adapt SACA and introduce its variant Dynamic Graph Pruning (DGP) mechanism to dynamically drop irrelevant nodes in the decoding process. We achieve new state-of-the-art results on two graph-to-text datasets, LDC2020T02 and ENT-DESC, with only minor increase on computational cost.


pdf bib
Rˆ3Net:Relation-embedded Representation Reconstruction Network for Change Captioning
Yunbin Tu | Liang Li | Chenggang Yan | Shengxiang Gao | Zhengtao Yu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Change captioning is to use a natural language sentence to describe the fine-grained disagreement between two similar images. Viewpoint change is the most typical distractor in this task, because it changes the scale and location of the objects and overwhelms the representation of real change. In this paper, we propose a Relation-embedded Representation Reconstruction Network (Rˆ3Net) to explicitly distinguish the real change from the large amount of clutter and irrelevant changes. Specifically, a relation-embedded module is first devised to explore potential changed objects in the large amount of clutter. Then, based on the semantic similarities of corresponding locations in the two images, a representation reconstruction module (RRM) is designed to learn the reconstruction representation and further model the difference representation. Besides, we introduce a syntactic skeleton predictor (SSP) to enhance the semantic interaction between change localization and caption generation. Extensive experiments show that the proposed method achieves the state-of-the-art results on two public datasets.

pdf bib
Semantic Relation-aware Difference Representation Learning for Change Captioning
Yunbin Tu | Tingting Yao | Liang Li | Jiedong Lou | Shengxiang Gao | Zhengtao Yu | Chenggang Yan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Improving Encoder by Auxiliary Supervision Tasks for Table-to-Text Generation
Liang Li | Can Ma | Yinliang Yue | Dayong Hu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Table-to-text generation aims at automatically generating natural text to help people conveniently obtain salient information in tables. Although neural models for table-to-text have achieved remarkable progress, some problems are still overlooked. Previous methods cannot deduce the factual results from the entity’s (player or team) performance and the relations between entities. To solve this issue, we first build an entity graph from the input tables and introduce a reasoning module to perform reasoning on the graph. Moreover, there are different relations (e.g., the numeric size relation and the importance relation) between records in different dimensions. And these relations may contribute to the data-to-text generation. However, it is hard for a vanilla encoder to capture these. Consequently, we propose to utilize two auxiliary tasks, Number Ranking (NR) and Importance Ranking (IR), to supervise the encoder to capture the different relations. Experimental results on ROTOWIRE and RW-FG show that our method not only has a good generalization but also outperforms previous methods on several metrics: BLEU, Content Selection, Content Ordering.


pdf bib
A Self-Attentive Model with Gate Mechanism for Spoken Language Understanding
Changliang Li | Liang Li | Ji Qi
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Spoken Language Understanding (SLU), which typically involves intent determination and slot filling, is a core component of spoken dialogue systems. Joint learning has shown to be effective in SLU given that slot tags and intents are supposed to share knowledge with each other. However, most existing joint learning methods only consider joint learning by sharing parameters on surface level rather than semantic level. In this work, we propose a novel self-attentive model with gate mechanism to fully utilize the semantic correlation between slot and intent. Our model first obtains intent-augmented embeddings based on neural network with self-attention mechanism. And then the intent semantic representation is utilized as the gate for labelling slot tags. The objectives of both tasks are optimized simultaneously via joint learning in an end-to-end way. We conduct experiment on popular benchmark ATIS. The results show that our model achieves state-of-the-art and outperforms other popular methods by a large margin in terms of both intent detection error rate and slot filling F1-score. This paper gives a new perspective for research on SLU.