Liang Qiao


pdf bib
Read Extensively, Focus Smartly: A Cross-document Semantic Enhancement Method for Visual Documents NER
Jun Zhao | Xin Zhao | WenYu Zhan | Tao Gui | Qi Zhang | Liang Qiao | Zhanzhan Cheng | Shiliang Pu
Proceedings of the 29th International Conference on Computational Linguistics

The introduction of multimodal information and pretraining technique significantly improves entity recognition from visually-rich documents. However, most of the existing methods pay unnecessary attention to irrelevant regions of the current document while ignoring the potentially valuable information in related documents. To deal with this problem, this work proposes a cross-document semantic enhancement method, which consists of two modules: 1) To prevent distractions from irrelevant regions in the current document, we design a learnable attention mask mechanism, which is used to adaptively filter redundant information in the current document. 2) To further enrich the entity-related context, we propose a cross-document information awareness technique, which enables the model to collect more evidence across documents to assist in prediction. The experimental results on two documents understanding benchmarks covering eight languages demonstrate that our method outperforms the SOTA methods.

pdf bib
MINER: Improving Out-of-Vocabulary Named Entity Recognition from an Information Theoretic Perspective
Xiao Wang | Shihan Dou | Limao Xiong | Yicheng Zou | Qi Zhang | Tao Gui | Liang Qiao | Zhanzhan Cheng | Xuanjing Huang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

NER model has achieved promising performance on standard NER benchmarks. However, recent studies show that previous approaches may over-rely on entity mention information, resulting in poor performance on out-of-vocabulary(OOV) entity recognition. In this work, we propose MINER, a novel NER learning framework, to remedy this issue from an information-theoretic perspective. The proposed approach contains two mutual information based training objectives: i) generalizing information maximization, which enhances representation via deep understanding of context and entity surface forms; ii) superfluous information minimization, which discourages representation from rotate memorizing entity names or exploiting biased cues in data. Experiments on various settings and datasets demonstrate that it achieves better performance in predicting OOV entities.

pdf bib
Flooding-X: Improving BERT’s Resistance to Adversarial Attacks via Loss-Restricted Fine-Tuning
Qin Liu | Rui Zheng | Bao Rong | Jingyi Liu | ZhiHua Liu | Zhanzhan Cheng | Liang Qiao | Tao Gui | Qi Zhang | Xuanjing Huang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Adversarial robustness has attracted much attention recently, and the mainstream solution is adversarial training. However, the tradition of generating adversarial perturbations for each input embedding (in the settings of NLP) scales up the training computational complexity by the number of gradient steps it takes to obtain the adversarial samples. To address this problem, we leverage Flooding method which primarily aims at better generalization and we find promising in defending adversarial attacks. We further propose an effective criterion to bring hyper-parameter-dependent flooding into effect with a narrowed-down search space by measuring how the gradient steps taken within one epoch affect the loss of each batch. Our approach requires zero adversarial sample for training, and its time consumption is equivalent to fine-tuning, which can be 2-15 times faster than standard adversarial training. We experimentally show that our method improves BERT’s resistance to textual adversarial attacks by a large margin, and achieves state-of-the-art robust accuracy on various text classification and GLUE tasks.