Liang Qiu


2022

pdf bib
Towards Socially Intelligent Agents with Mental State Transition and Human Value
Liang Qiu | Yizhou Zhao | Yuan Liang | Pan Lu | Weiyan Shi | Zhou Yu | Song-Chun Zhu
Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue

Building a socially intelligent agent involves many challenges. One of which is to track the agent’s mental state transition and teach the agent to make decisions guided by its value like a human. Towards this end, we propose to incorporate mental state simulation and value modeling into dialogue agents. First, we build a hybrid mental state parser that extracts information from both the dialogue and event observations and maintains a graphical representation of the agent’s mind; Meanwhile, the transformer-based value model learns human preferences from the human value dataset, ValueNet. Empirical results show that the proposed model attains state-of-the-art performance on the dialogue/action/emotion prediction task in the fantasy text-adventure game dataset, LIGHT. We also show example cases to demonstrate: (i) how the proposed mental state parser can assist the agent’s decision by grounding on the context like locations and objects, and (ii) how the value model can help the agent make decisions based on its personal priorities.

2021

pdf bib
SocAoG: Incremental Graph Parsing for Social Relation Inference in Dialogues
Liang Qiu | Yuan Liang | Yizhou Zhao | Pan Lu | Baolin Peng | Zhou Yu | Ying Nian Wu | Song-Chun Zhu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Inferring social relations from dialogues is vital for building emotionally intelligent robots to interpret human language better and act accordingly. We model the social network as an And-or Graph, named SocAoG, for the consistency of relations among a group and leveraging attributes as inference cues. Moreover, we formulate a sequential structure prediction task, and propose an 𝛼-𝛽-𝛾 strategy to incrementally parse SocAoG for the dynamic inference upon any incoming utterance: (i) an 𝛼 process predicting attributes and relations conditioned on the semantics of dialogues, (ii) a 𝛽 process updating the social relations based on related attributes, and (iii) a 𝛾 process updating individual’s attributes based on interpersonal social relations. Empirical results on DialogRE and MovieGraph show that our model infers social relations more accurately than the state-of-the-art methods. Moreover, the ablation study shows the three processes complement each other, and the case study demonstrates the dynamic relational inference.

pdf bib
Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning
Pan Lu | Ran Gong | Shibiao Jiang | Liang Qiu | Siyuan Huang | Xiaodan Liang | Song-Chun Zhu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Geometry problem solving has attracted much attention in the NLP community recently. The task is challenging as it requires abstract problem understanding and symbolic reasoning with axiomatic knowledge. However, current datasets are either small in scale or not publicly available. Thus, we construct a new large-scale benchmark, Geometry3K, consisting of 3,002 geometry problems with dense annotation in formal language. We further propose a novel geometry solving approach with formal language and symbolic reasoning, called Interpretable Geometry Problem Solver (Inter-GPS). Inter-GPS first parses the problem text and diagram into formal language automatically via rule-based text parsing and neural object detecting, respectively. Unlike implicit learning in existing methods, Inter-GPS incorporates theorem knowledge as conditional rules and performs symbolic reasoning step by step. Also, a theorem predictor is designed to infer the theorem application sequence fed to the symbolic solver for the more efficient and reasonable searching path. Extensive experiments on the Geometry3K and GEOS datasets demonstrate that Inter-GPS achieves significant improvements over existing methods. The project with code and data is available at https://lupantech.github.io/inter-gps.

2020

pdf bib
Structured Attention for Unsupervised Dialogue Structure Induction
Liang Qiu | Yizhou Zhao | Weiyan Shi | Yuan Liang | Feng Shi | Tao Yuan | Zhou Yu | Song-Chun Zhu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Inducing a meaningful structural representation from one or a set of dialogues is a crucial but challenging task in computational linguistics. Advancement made in this area is critical for dialogue system design and discourse analysis. It can also be extended to solve grammatical inference. In this work, we propose to incorporate structured attention layers into a Variational Recurrent Neural Network (VRNN) model with discrete latent states to learn dialogue structure in an unsupervised fashion. Compared to a vanilla VRNN, structured attention enables a model to focus on different parts of the source sentence embeddings while enforcing a structural inductive bias. Experiments show that on two-party dialogue datasets, VRNN with structured attention learns semantic structures that are similar to templates used to generate this dialogue corpus. While on multi-party dialogue datasets, our model learns an interactive structure demonstrating its capability of distinguishing speakers or addresses, automatically disentangling dialogues without explicit human annotation.