Liangming Pan


2024

pdf bib
AKEW: Assessing Knowledge Editing in the Wild
Xiaobao Wu | Liangming Pan | William Yang Wang | Anh Tuan Luu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Knowledge editing injects knowledge updates into language models to keep them correct and up-to-date. However, its current evaluations deviate significantly from practice: their knowledge updates solely consist of structured facts derived from meticulously crafted datasets, instead of practical sources—unstructured texts like news articles, and they often overlook practical real-world knowledge updates. To address these issues, in this paper we propose AKEW (Assessing Knowledge Editing in the Wild), a new practical benchmark for knowledge editing. AKEW fully covers three editing settings of knowledge updates: structured facts, unstructured texts as facts, and extracted triplets. It further introduces new datasets featuring both counterfactual and real-world knowledge updates. Through extensive experiments, we demonstrate the considerable gap between state-of-the-art knowledge-editing methods and practical scenarios. Our analyses further highlight key insights to motivate future research for practical knowledge editing.

pdf bib
SciAgent: Tool-augmented Language Models for Scientific Reasoning
Yubo Ma | Zhibin Gou | Junheng Hao | Ruochen Xu | Shuohang Wang | Liangming Pan | Yujiu Yang | Yixin Cao | Aixin Sun
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Scientific reasoning poses an excessive challenge for even the most advanced Large Language Models (LLMs). To make this task more practical and solvable for LLMs, we introduce a new task setting named tool-augmented scientific reasoning. This setting supplements LLMs with scalable toolsets, and shifts the focus from pursuing an omniscient problem solver to a proficient tool-user. To facilitate the research of such setting, we construct a tool-augmented training corpus named MathFunc which encompasses over 30,000 samples and roughly 6,000 tools. Building on MathFunc, we develop SciAgent to retrieve, understand and, if necessary, use tools for scientific problem solving. Additionally, we craft a benchmark, SciToolBench, spanning five scientific domains to evaluate LLMs’ abilities with tool assistance. Extensive experiments on SciToolBench confirm the effectiveness of SciAgent. Notably, SciAgent-Llama3-8B surpasses other LLMs with the comparable size by more than 8.0% in absolute accuracy. Furthermore, SciAgent-DeepMath-7B shows much superior performance than ChatGPT.

pdf bib
Automatically Correcting Large Language Models: Surveying the Landscape of Diverse Automated Correction Strategies
Liangming Pan | Michael Saxon | Wenda Xu | Deepak Nathani | Xinyi Wang | William Yang Wang
Transactions of the Association for Computational Linguistics, Volume 12

While large language models (LLMs) have shown remarkable effectiveness in various NLP tasks, they are still prone to issues such as hallucination, unfaithful reasoning, and toxicity. A promising approach to rectify these flaws is correcting LLMs with feedback, where the LLM itself is prompted or guided with feedback to fix problems in its own output. Techniques leveraging automated feedback—either produced by the LLM itself (self-correction) or some external system—are of particular interest as they make LLM-based solutions more practical and deployable with minimal human intervention. This paper provides an exhaustive review of the recent advances in correcting LLMs with automated feedback, categorizing them into training-time, generation-time, and post-hoc approaches. We also identify potential challenges and future directions in this emerging field.

pdf bib
Towards Verifiable Generation: A Benchmark for Knowledge-aware Language Model Attribution
Xinze Li | Yixin Cao | Liangming Pan | Yubo Ma | Aixin Sun
Findings of the Association for Computational Linguistics: ACL 2024

Although achieving great success, Large Language Models (LLMs) usually suffer from unreliable hallucinations. Although language attribution can be a potential solution, there are no suitable benchmarks and evaluation metrics to attribute LLMs to structured knowledge. In this paper, we define a new task of Knowledge-aware Language Model Attribution (KaLMA) that improves upon three core concerns with conventional attributed LMs. First, we extend attribution source from unstructured texts to Knowledge Graph (KG), whose rich structures benefit both the attribution performance and working scenarios. Second, we propose a new “Conscious Incompetence” setting considering the incomplete knowledge repository, where the model identifies the need for supporting knowledge beyond the provided KG. Third, we propose a comprehensive automatic evaluation metric encompassing text quality, citation quality, and text citation alignment. To implement the above innovations, we build a dataset in biography domain BioKaLMA via evolutionary question generation strategy, to control the question complexity and necessary knowledge to the answer. For evaluation, we develop a baseline solution and demonstrate the room for improvement in LLMs’ citation generation, emphasizing the importance of incorporating the “Conscious Incompetence” setting, and the critical role of retrieval accuracy.

pdf bib
The Knowledge Alignment Problem: Bridging Human and External Knowledge for Large Language Models
Shuo Zhang | Liangming Pan | Junzhou Zhao | William Yang Wang
Findings of the Association for Computational Linguistics: ACL 2024

Large language models often necessitate grounding on external knowledge to generate faithful and reliable answers. Yet even with the correct groundings in the reference, they can ignore them and rely on wrong groundings or their inherent biases to hallucinate when users, being largely unaware of the specifics of the stored information, pose questions that might not directly correlate with the retrieved groundings. In this work, we formulate this knowledge alignment problem and introduce MixAlign, a framework that interacts with both the human user and the knowledge base to obtain and integrate clarifications on how the user question relates to the stored information. MixAlign employs a language model to achieve automatic knowledge alignment and, if necessary, further enhances this alignment through human user clarifications. Experimental results highlight the crucial role of knowledge alignment in boosting model performance and mitigating hallucination, with improvements noted up to 22.2% and 27.1% respectively. We also demonstrate the effectiveness of MixAlign in improving knowledge alignment by producing high-quality, user-centered clarifications.

pdf bib
Modeling Dynamic Topics in Chain-Free Fashion by Evolution-Tracking Contrastive Learning and Unassociated Word Exclusion
Xiaobao Wu | Xinshuai Dong | Liangming Pan | Thong Nguyen | Anh Tuan Luu
Findings of the Association for Computational Linguistics: ACL 2024

Dynamic topic models track the evolution of topics in sequential documents, which have derived various applications like trend analysis. However, existing models suffer from repetitive topic and unassociated topic issues, failing to reveal the evolution and hindering further applications. To address these issues, we break the tradition of simply chaining topics in existing work and propose a novel neural Chain-Free Dynamic Topic Model. We introduce a new evolution-tracking contrastive learning method that builds the similarity relations among dynamic topics. This not only tracks topic evolution but also maintains topic diversity, mitigating the repetitive topic issue. To avoid unassociated topics, we further present an unassociated word exclusion method that consistently excludes unassociated words from discovered topics. Extensive experiments demonstrate our model significantly outperforms state-of-the-art baselines, tracking topic evolution with high-quality topics, showing better performance on downstream tasks, and remaining robust to the hyperparameter for evolution intensities.

pdf bib
Knowledge of Knowledge: Exploring Known-Unknowns Uncertainty with Large Language Models
Alfonso Amayuelas | Kyle Wong | Liangming Pan | Wenhu Chen | William Yang Wang
Findings of the Association for Computational Linguistics: ACL 2024

This paper investigates the capabilities of Large Language Models (LLMs) in understanding their knowledge and uncertainty over questions. Specifically, we focus on addressing known-unknown questions, characterized by high uncertainty due to the absence of definitive answers. To facilitate our study, we collect a new dataset with Known-Unknown Questions (KUQ) and establish a categorization framework to clarify the origins of uncertainty in such queries. Subsequently, we examine the performance of open-source LLMs, fine-tuned using this dataset, in distinguishing between known and unknown queries within open-ended question-answering scenarios. The fine-tuned models demonstrated a significant improvement, achieving a considerable increase in F1-score relative to their pre-fine-tuning state. Through a comprehensive analysis, we reveal insights into the models’ improved uncertainty articulation and their consequent efficacy in multi-agent debates. These findings help us understand how LLMs can be trained to identify and express uncertainty, improving our knowledge of how they understand and express complex or unclear information.

pdf bib
MultiAgent Collaboration Attack: Investigating Adversarial Attacks in Large Language Model Collaborations via Debate
Alfonso Amayuelas | Xianjun Yang | Antonis Antoniades | Wenyue Hua | Liangming Pan | William Yang Wang
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs) have shown exceptional results on current benchmarks when working individually. The advancement in their capabilities, along with a reduction in parameter size and inference times, has facilitated the use of these models as agents, enabling interactions among multiple models to execute complex tasks. Such collaborations offer several advantages, including the use of specialized models (e.g. coding), improved confidence through multiple computations, and enhanced divergent thinking, leading to more diverse outputs. Thus, the collaborative use of language models is expected to grow significantly in the coming years. In this work, we evaluate the behavior of a network of models collaborating through debate under the influence of an adversary. We introduce pertinent metrics to assess the adversary’s effectiveness, focusing on system accuracy and model agreement. Our findings highlight the importance of a model’s persuasive ability in influencing others. Additionally, we explore inference-time methods to generate more compelling arguments and evaluate the potential of prompt-based mitigation as a defensive strategy.

pdf bib
A Survey on Detection of LLMs-Generated Content
Xianjun Yang | Liangming Pan | Xuandong Zhao | Haifeng Chen | Linda Ruth Petzold | William Yang Wang | Wei Cheng
Findings of the Association for Computational Linguistics: EMNLP 2024

The burgeoning capabilities of advanced large language models (LLMs) such as ChatGPT have led to an increase in synthetic content generation with implications across a variety of sectors, including media, cybersecurity, public discourse, and education. As such, the ability to detect LLMs-generated content has become of paramount importance. We aim to provide a detailed overview of existing detection strategies and benchmarks, scrutinizing their differences and identifying key challenges and prospects in the field, advocating for more adaptable and robust models to enhance detection accuracy. We also posit the necessity for a multi-faceted approach to defend against various attacks to counter the rapidly advancing capabilities of LLMs. To the best of our knowledge, this work is the first comprehensive survey on the detection in the era of LLMs. We hope it will provide a broad understanding of the current landscape of LLMs-generated content detection, and we have maintained a website to consistently update the latest research as a guiding reference for researchers and practitioners.

pdf bib
Factcheck-Bench: Fine-Grained Evaluation Benchmark for Automatic Fact-checkers
Yuxia Wang | Revanth Gangi Reddy | Zain Muhammad Mujahid | Arnav Arora | Aleksandr Rubashevskii | Jiahui Geng | Osama Mohammed Afzal | Liangming Pan | Nadav Borenstein | Aditya Pillai | Isabelle Augenstein | Iryna Gurevych | Preslav Nakov
Findings of the Association for Computational Linguistics: EMNLP 2024

The increased use of large language models (LLMs) across a variety of real-world applications calls for mechanisms to verify the factual accuracy of their outputs. In this work, we present Factcheck-Bench, a holistic end-to-end framework for annotating and evaluating the factuality of LLM-generated responses, which encompasses a multi-stage annotation scheme designed to yield detailed labels for fact-checking and correcting not just the final prediction, but also the intermediate steps that a fact-checking system might need to take. Based on this framework, we construct an open-domain factuality benchmark in three-levels of granularity: claim, sentence, and document. We further propose a system, Factcheck-GPT, which follows our framework, and we show that it outperforms several popular LLM fact-checkers. We make our annotation tool, annotated data, benchmark, and code available at https://github.com/yuxiaw/Factcheck-GPT.

pdf bib
Faithful Logical Reasoning via Symbolic Chain-of-Thought
Jundong Xu | Hao Fei | Liangming Pan | Qian Liu | Mong-Li Lee | Wynne Hsu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While the recent Chain-of-Thought (CoT) technique enhances the reasoning ability of large language models (LLMs) with the theory of mind, it might still struggle in handling logical reasoning that relies much on symbolic expressions and rigid deducing rules. To strengthen the logical reasoning capability of LLMs, we propose a novel Symbolic Chain-of-Thought, namely SymbCoT, a fully LLM-based framework that integrates symbolic expressions and logic rules with CoT prompting. Technically, building upon an LLM, SymbCoT 1) first translates the natural language context into the symbolic format, and then 2) derives a step-by-step plan to solve the problem with symbolic logical rules, 3) followed by a verifier to check the translation and reasoning chain. Via thorough evaluations on 5 standard datasets with both First-Order Logic and Constraint Optimization symbolic expressions, SymbCoT shows striking improvements over the CoT method consistently, meanwhile refreshing the current state-of-the-art performances. We further demonstrate that our system advances in more faithful, flexible, and explainable logical reasoning. To our knowledge, this is the first attempt at combining symbolic expressions and rules into CoT for logical reasoning with LLMs. Code is open at https://github.com/Aiden0526/SymbCoT.

pdf bib
Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement
Wenda Xu | Guanglei Zhu | Xuandong Zhao | Liangming Pan | Lei Li | William Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent studies show that large language models (LLMs) improve their performance through self-feedback on certain tasks while degrade on others. We discovered that such a contrary is due to LLM’s bias in evaluating their own output. In this paper, we formally define LLM’s self-bias – the tendency to favor its own generation – using two statistics. We analyze six LLMs (GPT-4, GPT-3.5, Gemini, LLaMA2, Mixtral and DeepSeek) on translation, constrained text generation, and mathematical reasoning tasks. We find that self-bias is prevalent in all examined LLMs across multiple languages and tasks. Our analysis reveals that while the self-refine pipeline improves the fluency and understandability of model outputs, it further amplifies self-bias. To mitigate such biases, we discover that larger model size and external feedback with accurate assessment can significantly reduce bias in the self-refine pipeline, leading to actual performance improvement in downstream tasks. The code and data are released at https://github.com/xu1998hz/llm_self_bias.

2023

pdf bib
Fact-Checking Complex Claims with Program-Guided Reasoning
Liangming Pan | Xiaobao Wu | Xinyuan Lu | Anh Tuan Luu | William Yang Wang | Min-Yen Kan | Preslav Nakov
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Fact-checking real-world claims often requires collecting multiple pieces of evidence and applying complex multi-step reasoning. In this paper, we present Program-Guided Fact-Checking (ProgramFC), a novel fact-checking model that decomposes complex claims into simpler sub-tasks that can be solved using a shared library of specialized functions. We first leverage the in-context learning ability of large language models to generate reasoning programs to guide the verification process. Afterward, we execute the program by delegating each sub-task to the corresponding sub-task handler. This process makes our model both explanatory and data-efficient, providing clear explanations of its reasoning process and requiring minimal training data. We evaluate ProgramFC on two challenging fact-checking datasets and show that it outperforms seven fact-checking baselines across different settings of evidence availability, with explicit output programs that benefit human debugging. Our codes and data are publicly available at https://github.com/mbzuai-nlp/ProgramFC.

pdf bib
Modeling What-to-ask and How-to-ask for Answer-unaware Conversational Question Generation
Xuan Long Do | Bowei Zou | Shafiq Joty | Tran Tai | Liangming Pan | Nancy Chen | Ai Ti Aw
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Conversational Question Generation (CQG) is a critical task for machines to assist humans in fulfilling their information needs through conversations. The task is generally cast into two different settings: answer-aware and answer-unaware. While the former facilitates the models by exposing the expected answer, the latter is more realistic and receiving growing attentions recently. What-to-ask and how-to-ask are the two main challenges in the answer-unaware setting. To address the first challenge, existing methods mainly select sequential sentences in context as the rationales. We argue that the conversation generated using such naive heuristics may not be natural enough as in reality, the interlocutors often talk about the relevant contents that are not necessarily sequential in context. Additionally, previous methods decide the type of question to be generated (boolean/span-based) implicitly. Modeling the question type explicitly is crucial as the answer, which hints the models to generate a boolean or span-based question, is unavailable. To this end, we present SG-CQG, a two-stage CQG framework. For the what-to-ask stage, a sentence is selected as the rationale from a semantic graph that we construct, and extract the answer span from it. For the how-to-ask stage, a classifier determines the target answer type of the question via two explicit control signals before generating and filtering. In addition, we propose Conv-Distinct, a novel evaluation metric for CQG, to evaluate the diversity of the generated conversation from a context. Compared with the existing answer-unaware CQG models, the proposed SG-CQG achieves state-of-the-art performance.

pdf bib
On the Risk of Misinformation Pollution with Large Language Models
Yikang Pan | Liangming Pan | Wenhu Chen | Preslav Nakov | Min-Yen Kan | William Wang
Findings of the Association for Computational Linguistics: EMNLP 2023

We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation and its subsequent impact on information-intensive applications, particularly Open-Domain Question Answering (ODQA) systems. We establish a threat model and simulate potential misuse scenarios, both unintentional and intentional, to assess the extent to which LLMs can be utilized to produce misinformation. Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation (up to 87%) in the performance of ODQA systems. Moreover, we uncover disparities in the attributes associated with persuading humans and machines, presenting an obstacle to current human-centric approaches to combat misinformation. To mitigate the harm caused by LLM-generated misinformation, we propose three defense strategies: misinformation detection, vigilant prompting, and reader ensemble. These approaches have demonstrated promising results, albeit with certain associated costs. Lastly, we discuss the practicality of utilizing LLMs as automatic misinformation generators and provide relevant resources and code to facilitate future research in this area.

pdf bib
Logic-LM: Empowering Large Language Models with Symbolic Solvers for Faithful Logical Reasoning
Liangming Pan | Alon Albalak | Xinyi Wang | William Wang
Findings of the Association for Computational Linguistics: EMNLP 2023

Large Language Models (LLMs) have shown human-like reasoning abilities but still struggle with complex logical problems. This paper introduces a novel framework, Logic-LM, which integrates LLMs with symbolic solvers to improve logical problem-solving. Our method first utilizes LLMs to translate a natural language problem into a symbolic formulation. Afterward, a deterministic symbolic solver performs inference on the formulated problem. We also introduce a self-refinement module, which utilizes the symbolic solver’s error messages to revise symbolic formalizations. We demonstrate Logic-LM’s effectiveness on five logical reasoning datasets: ProofWriter, PrOntoQA, FOLIO, LogicalDeduction, and AR-LSAT. On average, Logic-LM achieves a significant performance boost of 39.2% over using LLM alone with standard prompting and 18.4% over LLM with chain-of-thought prompting. Our findings suggest that Logic-LM, by combining LLMs with symbolic logic, offers a promising avenue for faithful logical reasoning.

pdf bib
INSTRUCTSCORE: Towards Explainable Text Generation Evaluation with Automatic Feedback
Wenda Xu | Danqing Wang | Liangming Pan | Zhenqiao Song | Markus Freitag | William Wang | Lei Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Automatically evaluating the quality of language generation is critical. Although recent learned metrics show high correlation with human judgement, these metrics do not provide explicit explanation of their verdict, nor associate the scores with defects in the generated text. To address this limitation, we present INSTRUCTSCORE, a fine-grained explainable evaluation metric for text generation. By harnessing both explicit human instruction and the implicit knowledge of GPT-4, we fine-tune a text evaluation metric based on LLaMA, producing both a score for generated text and a human readable diagnostic report. We evaluate INSTRUCTSCORE on a variety of generation tasks, including translation, captioning, data-to-text, and commonsense generation. Experiments show that our 7B model surpasses all other unsupervised metrics, including those based on 175B GPT-3 and GPT-4. Surprisingly, our INSTRUCTSCORE, even without direct supervision from human-rated data, achieves performance levels on par with state-of-the-art metrics like COMET22, which were fine-tuned on human ratings.

pdf bib
MAF: Multi-Aspect Feedback for Improving Reasoning in Large Language Models
Deepak Nathani | David Wang | Liangming Pan | William Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Language Models (LMs) have shown impressive performance in various natural language tasks. However, when it comes to natural language reasoning, LMs still face challenges such as hallucination, generating incorrect intermediate reasoning steps, and making mathematical errors. Recent research has focused on enhancing LMs through *self-improvement* using feedback. Nevertheless, existing approaches relying on a single generic feedback source fail to address the diverse error types found in LM-generated reasoning chains. In this work, we propose **Multi-Aspect Feedback**, an iterative refinement framework that integrates multiple feedback modules, including frozen LMs and external tools, each focusing on a specific error category. Our experimental results demonstrate the efficacy of our approach to addressing several errors in the LM-generated reasoning chain and thus improving the overall performance of an LM in several reasoning tasks. We see an improvement of up to 20% in Mathematical Reasoning and up to 18% in Logical Entailment.

pdf bib
SCITAB: A Challenging Benchmark for Compositional Reasoning and Claim Verification on Scientific Tables
Xinyuan Lu | Liangming Pan | Qian Liu | Preslav Nakov | Min-Yen Kan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Current scientific fact-checking benchmarks exhibit several shortcomings, such as biases arising from crowd-sourced claims and an over-reliance on text-based evidence. We present SCITAB, a challenging evaluation dataset consisting of 1.2K expert-verified scientific claims that 1) originate from authentic scientific publications and 2) require compositional reasoning for verification. The claims are paired with evidence-containing scientific tables annotated with labels. Through extensive evaluations, we demonstrate that SCITAB poses a significant challenge to state-of-the-art models, including table-based pretraining models and large language models. All models except GPT-4 achieved performance barely above random guessing. Popular prompting techniques, such as Chain-of-Thought, do not achieve much performance gains on SCITAB. Our analysis uncovers several unique challenges posed by SCITAB, including table grounding, claim ambiguity, and compositional reasoning. Our codes and data are publicly available at https://github.com/XinyuanLu00/SciTab.

pdf bib
Doolittle: Benchmarks and Corpora for Academic Writing Formalization
Shizhe Diao | Yongyu Lei | Liangming Pan | Tianqing Fang | Wangchunshu Zhou | Sedrick Keh | Min-Yen Kan | Tong Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Improving the quality of academic writing is a meaningful but challenging task. Conventional methods of language refinement focus on narrow, specific linguistic features within isolated sentences, such as grammatical errors and improper word use. We propose a more general task, Academic Writing Formalization (AWF), to improve the overall quality of formal academic writing at the paragraph level. We formulate this language refinement task as a formal text style transfer task which transfers informal-academic text to formal-academic and contribute a large-scale non-parallel dataset, Doolittle, for this purpose. Concurrently, we apply a method named metric-oriented reinforcement learning (MORL) to two large language models (LLM) where we incorporate different levels of automatic feedback into the training process. Our experiments reveal that existing text transfer models and grammatical error correction models address certain aspects of AWF but still have a significant performance gap compared to human performance. Meanwhile, language models fine-tuned with our MORL method exhibit considerably improved performance, rivaling the latest chatbot ChatGPT, but still have a non-negligible gap compared to the ground truth formal-academic texts in Doolittle.

pdf bib
QACheck: A Demonstration System for Question-Guided Multi-Hop Fact-Checking
Liangming Pan | Xinyuan Lu | Min-Yen Kan | Preslav Nakov
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Fact-checking real-world claims often requires intricate, multi-step reasoning due to the absence of direct evidence to support or refute them. However, existing fact-checking systems often lack transparency in their decision-making, making it challenging for users to comprehend their reasoning process. To address this, we propose the Question-guided Multi-hop Fact-Checking (QACheck) system, which guides the model’s reasoning process by asking a series of questions critical for verifying a claim. QACheck has five key modules: a claim verifier, a question generator, a question-answering module, a QA validator, and a reasoner. Users can input a claim into QACheck, which then predicts its veracity and provides a comprehensive report detailing its reasoning process, guided by a sequence of (question, answer) pairs. QACheck also provides the source of evidence supporting each question, fostering a transparent, explainable, and user-friendly fact-checking process.

pdf bib
FollowupQG: Towards information-seeking follow-up question generation
Yan Meng | Liangming Pan | Yixin Cao | Min-Yen Kan
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Investigating Zero- and Few-shot Generalization in Fact Verification
Liangming Pan | Yunxiang Zhang | Min-Yen Kan
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Attacking Open-domain Question Answering by Injecting Misinformation
Liangming Pan | Wenhu Chen | Min-Yen Kan | William Yang Wang
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

2022

pdf bib
KQA Pro: A Dataset with Explicit Compositional Programs for Complex Question Answering over Knowledge Base
Shulin Cao | Jiaxin Shi | Liangming Pan | Lunyiu Nie | Yutong Xiang | Lei Hou | Juanzi Li | Bin He | Hanwang Zhang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Complex question answering over knowledge base (Complex KBQA) is challenging because it requires various compositional reasoning capabilities, such as multi-hop inference, attribute comparison, set operation, etc. Existing benchmarks have some shortcomings that limit the development of Complex KBQA: 1) they only provide QA pairs without explicit reasoning processes; 2) questions are poor in diversity or scale. To this end, we introduce KQA Pro, a dataset for Complex KBQA including around 120K diverse natural language questions. We introduce a compositional and interpretable programming language KoPL to represent the reasoning process of complex questions. For each question, we provide the corresponding KoPL program and SPARQL query, so that KQA Pro can serve for both KBQA and semantic parsing tasks. Experimental results show that state-of-the-art KBQA methods cannot achieve promising results on KQA Pro as on current datasets, which suggests that KQA Pro is challenging and Complex KBQA requires further research efforts. We also treat KQA Pro as a diagnostic dataset for testing multiple reasoning skills, conduct a thorough evaluation of existing models and discuss further directions for Complex KBQA. Our codes and datasets can be obtained from https://github.com/shijx12/KQAPro_Baselines.

pdf bib
Interpreting the Robustness of Neural NLP Models to Textual Perturbations
Yunxiang Zhang | Liangming Pan | Samson Tan | Min-Yen Kan
Findings of the Association for Computational Linguistics: ACL 2022

Modern Natural Language Processing (NLP) models are known to be sensitive to input perturbations and their performance can decrease when applied to real-world, noisy data. However, it is still unclear why models are less robust to some perturbations than others. In this work, we test the hypothesis that the extent to which a model is affected by an unseen textual perturbation (robustness) can be explained by the learnability of the perturbation (defined as how well the model learns to identify the perturbation with a small amount of evidence). We further give a causal justification for the learnability metric. We conduct extensive experiments with four prominent NLP models — TextRNN, BERT, RoBERTa and XLNet — over eight types of textual perturbations on three datasets. We show that a model which is better at identifying a perturbation (higher learnability) becomes worse at ignoring such a perturbation at test time (lower robustness), providing empirical support for our hypothesis.

pdf bib
Automatic True/False Question Generation for Educational Purpose
Bowei Zou | Pengfei Li | Liangming Pan | Ai Ti Aw
Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)

In field of teaching, true/false questioning is an important educational method for assessing students’ general understanding of learning materials. Manually creating such questions requires extensive human effort and expert knowledge. Question Generation (QG) technique offers the possibility to automatically generate a large number of questions. However, there is limited work on automatic true/false question generation due to the lack of training data and difficulty finding question-worthy content. In this paper, we propose an unsupervised True/False Question Generation approach (TF-QG) that automatically generates true/false questions from a given passage for reading comprehension test. TF-QG consists of a template-based framework that aims to test the specific knowledge in the passage by leveraging various NLP techniques, and a generative framework to generate more flexible and complicated questions by using a novel masking-and-infilling strategy. Human evaluation shows that our approach can generate high-quality and valuable true/false questions. In addition, simulated testing on the generated questions challenges the state-of-the-art inference models from NLI, QA, and fact verification tasks.

pdf bib
CoHS-CQG: Context and History Selection for Conversational Question Generation
Xuan Long Do | Bowei Zou | Liangming Pan | Nancy F. Chen | Shafiq Joty | Ai Ti Aw
Proceedings of the 29th International Conference on Computational Linguistics

Conversational question generation (CQG) serves as a vital task for machines to assist humans, such as interactive reading comprehension, through conversations. Compared to traditional single-turn question generation (SQG), CQG is more challenging in the sense that the generated question is required not only to be meaningful, but also to align with the provided conversation. Previous studies mainly focus on how to model the flow and alignment of the conversation, but do not thoroughly study which parts of the context and history are necessary for the model. We believe that shortening the context and history is crucial as it can help the model to optimise more on the conversational alignment property. To this end, we propose CoHS-CQG, a two-stage CQG framework, which adopts a novel CoHS module to shorten the context and history of the input. In particular, it selects the top-p sentences and history turns by calculating the relevance scores of them. Our model achieves state-of-the-art performances on CoQA in both the answer-aware and answer-unaware settings.

pdf bib
KHANQ: A Dataset for Generating Deep Questions in Education
Huanli Gong | Liangming Pan | Hengchang Hu
Proceedings of the 29th International Conference on Computational Linguistics

Designing in-depth educational questions is a time-consuming and cognitively demanding task. Therefore, it is intriguing to study how to build Question Generation (QG) models to automate the question creation process. However, existing QG datasets are not suitable for educational question generation because the questions are not real questions asked by humans during learning and can be solved by simply searching for information. To bridge this gap, we present KHANQ, a challenging dataset for educational question generation, containing 1,034 high-quality learner-generated questions seeking an in-depth understanding of the taught online courses in Khan Academy. Each data sample is carefully paraphrased and annotated as a triple of 1) Context: an independent paragraph on which the question is based; 2) Prompt: a text prompt for the question (e.g., the learner’s background knowledge); 3) Question: a deep question based on Context and coherent with Prompt. By conducting a human evaluation on the aspects of appropriateness, coverage, coherence, and complexity, we show that state-of-the-art QG models which perform well on shallow question generation datasets have difficulty in generating useful educational questions. This makes KHANQ a challenging testbed for educational question generation.

2021

pdf bib
Zero-shot Fact Verification by Claim Generation
Liangming Pan | Wenhu Chen | Wenhan Xiong | Min-Yen Kan | William Yang Wang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Neural models for automated fact verification have achieved promising results thanks to the availability of large, human-annotated datasets. However, for each new domain that requires fact verification, creating a dataset by manually writing claims and linking them to their supporting evidence is expensive. We develop QACG, a framework for training a robust fact verification model by using automatically generated claims that can be supported, refuted, or unverifiable from evidence from Wikipedia. QACG generates question-answer pairs from the evidence and then converts them into different types of claims. Experiments on the FEVER dataset show that our QACG framework significantly reduces the demand for human-annotated training data. In a zero-shot scenario, QACG improves a RoBERTa model’s F1 from 50% to 77%, equivalent in performance to 2K+ manually-curated examples. Our QACG code is publicly available.

pdf bib
Unsupervised Multi-hop Question Answering by Question Generation
Liangming Pan | Wenhu Chen | Wenhan Xiong | Min-Yen Kan | William Yang Wang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Obtaining training data for multi-hop question answering (QA) is time-consuming and resource-intensive. We explore the possibility to train a well-performed multi-hop QA model without referencing any human-labeled multi-hop question-answer pairs, i.e., unsupervised multi-hop QA. We propose MQA-QG, an unsupervised framework that can generate human-like multi-hop training data from both homogeneous and heterogeneous data sources. MQA-QG generates questions by first selecting/generating relevant information from each data source and then integrating the multiple information to form a multi-hop question. Using only generated training data, we can train a competent multi-hop QA which achieves 61% and 83% of the supervised learning performance for the HybridQA and the HotpotQA dataset, respectively. We also show that pretraining the QA system with the generated data would greatly reduce the demand for human-annotated training data. Our codes are publicly available at https://github.com/teacherpeterpan/Unsupervised-Multi-hop-QA.

2020

pdf bib
Exploring Question-Specific Rewards for Generating Deep Questions
Yuxi Xie | Liangming Pan | Dongzhe Wang | Min-Yen Kan | Yansong Feng
Proceedings of the 28th International Conference on Computational Linguistics

Recent question generation (QG) approaches often utilize the sequence-to-sequence framework (Seq2Seq) to optimize the log likelihood of ground-truth questions using teacher forcing. However, this training objective is inconsistent with actual question quality, which is often reflected by certain global properties such as whether the question can be answered by the document. As such, we directly optimize for QG-specific objectives via reinforcement learning to improve question quality. We design three different rewards that target to improve the fluency, relevance, and answerability of generated questions. We conduct both automatic and human evaluations in addition to thorough analysis to explore the effect of each QG-specific reward. We find that optimizing on question-specific rewards generally leads to better performance in automatic evaluation metrics. However, only the rewards that correlate well with human judgement (e.g., relevance) lead to real improvement in question quality. Optimizing for the others, especially answerability, introduces incorrect bias to the model, resulting in poorer question quality. The code is publicly available at https://github.com/YuxiXie/RL-for-Question-Generation.

pdf bib
Expertise Style Transfer: A New Task Towards Better Communication between Experts and Laymen
Yixin Cao | Ruihao Shui | Liangming Pan | Min-Yen Kan | Zhiyuan Liu | Tat-Seng Chua
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The curse of knowledge can impede communication between experts and laymen. We propose a new task of expertise style transfer and contribute a manually annotated dataset with the goal of alleviating such cognitive biases. Solving this task not only simplifies the professional language, but also improves the accuracy and expertise level of laymen descriptions using simple words. This is a challenging task, unaddressed in previous work, as it requires the models to have expert intelligence in order to modify text with a deep understanding of domain knowledge and structures. We establish the benchmark performance of five state-of-the-art models for style transfer and text simplification. The results demonstrate a significant gap between machine and human performance. We also discuss the challenges of automatic evaluation, to provide insights into future research directions. The dataset is publicly available at https://srhthu.github.io/expertise-style-transfer/.

pdf bib
Semantic Graphs for Generating Deep Questions
Liangming Pan | Yuxi Xie | Yansong Feng | Tat-Seng Chua | Min-Yen Kan
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper proposes the problem of Deep Question Generation (DQG), which aims to generate complex questions that require reasoning over multiple pieces of information about the input passage. In order to capture the global structure of the document and facilitate reasoning, we propose a novel framework that first constructs a semantic-level graph for the input document and then encodes the semantic graph by introducing an attention-based GGNN (Att-GGNN). Afterward, we fuse the document-level and graph-level representations to perform joint training of content selection and question decoding. On the HotpotQA deep-question centric dataset, our model greatly improves performance over questions requiring reasoning over multiple facts, leading to state-of-the-art performance. The code is publicly available at https://github.com/WING-NUS/SG-Deep-Question-Generation.

pdf bib
Exploring and Evaluating Attributes, Values, and Structures for Entity Alignment
Zhiyuan Liu | Yixin Cao | Liangming Pan | Juanzi Li | Zhiyuan Liu | Tat-Seng Chua
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Entity alignment (EA) aims at building a unified Knowledge Graph (KG) of rich content by linking the equivalent entities from various KGs. GNN-based EA methods present promising performance by modeling the KG structure defined by relation triples. However, attribute triples can also provide crucial alignment signal but have not been well explored yet. In this paper, we propose to utilize an attributed value encoder and partition the KG into subgraphs to model the various types of attribute triples efficiently. Besides, the performances of current EA methods are overestimated because of the name-bias of existing EA datasets. To make an objective evaluation, we propose a hard experimental setting where we select equivalent entity pairs with very different names as the test set. Under both the regular and hard settings, our method achieves significant improvements (5.10% on average Hits@1 in DBP15k) over 12 baselines in cross-lingual and monolingual datasets. Ablation studies on different subgraphs and a case study about attribute types further demonstrate the effectiveness of our method. Source code and data can be found at https://github.com/thunlp/explore-and-evaluate.

2017

pdf bib
Course Concept Extraction in MOOCs via Embedding-Based Graph Propagation
Liangming Pan | Xiaochen Wang | Chengjiang Li | Juanzi Li | Jie Tang
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Massive Open Online Courses (MOOCs), offering a new way to study online, are revolutionizing education. One challenging issue in MOOCs is how to design effective and fine-grained course concepts such that students with different backgrounds can grasp the essence of the course. In this paper, we conduct a systematic investigation of the problem of course concept extraction for MOOCs. We propose to learn latent representations for candidate concepts via an embedding-based method. Moreover, we develop a graph-based propagation algorithm to rank the candidate concepts based on the learned representations. We evaluate the proposed method using different courses from XuetangX and Coursera. Experimental results show that our method significantly outperforms all the alternative methods (+0.013-0.318 in terms of R-precision; p<<0.01, t-test).

pdf bib
Prerequisite Relation Learning for Concepts in MOOCs
Liangming Pan | Chengjiang Li | Juanzi Li | Jie Tang
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

What prerequisite knowledge should students achieve a level of mastery before moving forward to learn subsequent coursewares? We study the extent to which the prerequisite relation between knowledge concepts in Massive Open Online Courses (MOOCs) can be inferred automatically. In particular, what kinds of information can be leverage to uncover the potential prerequisite relation between knowledge concepts. We first propose a representation learning-based method for learning latent representations of course concepts, and then investigate how different features capture the prerequisite relations between concepts. Our experiments on three datasets form Coursera show that the proposed method achieves significant improvements (+5.9-48.0% by F1-score) comparing with existing methods.