Liangzhi Li


2024

pdf bib
Can Multiple-choice Questions Really Be Useful in Detecting the Abilities of LLMs?
Wangyue Li | Liangzhi Li | Tong Xiang | Xiao Liu | Wei Deng | Noa Garcia
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multiple-choice questions (MCQs) are widely used in the evaluation of large language models (LLMs) due to their simplicity and efficiency. However, there are concerns about whether MCQs can truly measure LLM’s capabilities, particularly in knowledge-intensive scenarios where long-form generation (LFG) answers are required. The misalignment between the task and the evaluation method demands a thoughtful analysis of MCQ’s efficacy, which we undertake in this paper by evaluating nine LLMs on four question-answering (QA) datasets in two languages: Chinese and English. We identify a significant issue: LLMs exhibit an order sensitivity in bilingual MCQs, favoring answers located at specific positions, i.e., the first position. We further quantify the gap between MCQs and long-form generation questions (LFGQs) by comparing their direct outputs, token logits, and embeddings. Our results reveal a relatively low correlation between answers from MCQs and LFGQs for identical questions. Additionally, we propose two methods to quantify the consistency and confidence of LLMs’ output, which can be generalized to other QA evaluation benchmarks. Notably, our analysis challenges the idea that the higher the consistency, the greater the accuracy. We also find MCQs to be less reliable than LFGQs in terms of expected calibration error. Finally, the misalignment between MCQs and LFGQs is not only reflected in the evaluation performance but also in the embedding space. Our code and models can be accessed at https://github.com/Meetyou-AI-Lab/Can-MC-Evaluate-LLMs.

pdf bib
MHGRL: An Effective Representation Learning Model for Electronic Health Records
Feiyan Liu | Liangzhi Li | Xiaoli Wang | Feng Luo | Chang Liu | Jinsong Su | Yiming Qian
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Electronic health records (EHRs) serve as a digital repository storing comprehensive medical information about patients. Representation learning for EHRs plays a crucial role in healthcare applications. In this paper, we propose a Multimodal Heterogeneous Graph-enhanced Representation Learning, denoted as MHGRL, aimed at learning effective EHR representations. To address the challenge posed by data insufficiency of EHRs, MHGRL utilizes a multimodal heterogeneous graph to model an EHR. Specifically, we construct a heterogeneous graph for each EHR and enrich it by incorporating multimodal information with medical ontology and textual notes. With the integration of pre-trained model, graph neural network, and attention mechanism, MHGRL effectively incorporates both node attributes and structural information across a multimodal heterogeneous graph. Moreover, we employ contrastive learning to ensure the consistency of representations for similar EHRs and improve the model robustness. The experimental results show that MHGRL outperforms all baselines on two real clinical datasets in downstream tasks, including EHR clustering and disease prediction. The code is available at https://github.com/emmali808/MHGRL.

2023

pdf bib
Dual-Feedback Knowledge Retrieval for Task-Oriented Dialogue Systems
Tianyuan Shi | Liangzhi Li | Zijian Lin | Tao Yang | Xiaojun Quan | Qifan Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Efficient knowledge retrieval plays a pivotal role in ensuring the success of end-to-end task-oriented dialogue systems by facilitating the selection of relevant information necessary to fulfill user requests. However, current approaches generally integrate knowledge retrieval and response generation, which poses scalability challenges when dealing with extensive knowledge bases. Taking inspiration from open-domain question answering, we propose a retriever-generator architecture that harnesses a retriever to retrieve pertinent knowledge and a generator to generate system responses. Due to the lack of retriever training labels, we propose relying on feedback from the generator as pseudo-labels to train the retriever. To achieve this, we introduce a dual-feedback mechanism that generates both positive and negative feedback based on the output of the generator. Our method demonstrates superior performance in task-oriented dialogue tasks, as evidenced by experimental results on three benchmark datasets.

pdf bib
MPrompt: Exploring Multi-level Prompt Tuning for Machine Reading Comprehension
Guoxin Chen | Yiming Qian | Bowen Wang | Liangzhi Li
Findings of the Association for Computational Linguistics: EMNLP 2023

The large language models have achieved superior performance on various natural language tasks. One major drawback of such approaches is they are resource-intensive in fine-tuning new datasets. Soft-prompt tuning presents a resource-efficient solution to fine-tune the pre-trained language models (PLMs) while keeping their weight frozen. Existing soft prompt methods mainly focus on designing the input-independent prompts that steer the model to fit the domain of the new dataset. Those methods often ignore the fine-grained information about the task and context of the text. In this paper, we propose a multi-level prompt tuning (MPrompt) method for machine reading comprehension. It utilizes prompts at task-specific, domain-specific, and context-specific levels to enhance the comprehension of input semantics at different granularities. We also propose an independence constraint to steer each domain-specific prompt to focus on information within its domain to avoid redundancy. Moreover, we present a prompt generator that incorporates context-related knowledge in the prompt generation to enhance contextual relevancy. We conducted extensive experiments on 12 benchmarks of various QA formats and achieved an average improvement of 1.94% over the state-of-the-art methods.

pdf bib
TCRA-LLM: Token Compression Retrieval Augmented Large Language Model for Inference Cost Reduction
Junyi Liu | Liangzhi Li | Tong Xiang | Bowen Wang | Yiming Qian
Findings of the Association for Computational Linguistics: EMNLP 2023

Since ChatGPT released its API for public use, the number of applications built on top of commercial large language models (LLMs) increase exponentially. One popular usage of such models is leveraging its in-context learning ability and generating responses given user queries leveraging knowledge obtained by retrieval augmentation. One problem of deploying commercial retrieval-augmented LLMs is the cost due to the additionally retrieved context that largely increases the input token size of the LLMs. To mitigate this, we propose a token compression scheme that includes two methods: summarization compression and semantic compression. The first method applies a T5-based model that is fine-tuned by datasets generated using self-instruct containing samples with varying lengths and reduce token size by doing summarization. The second method further compresses the token size by removing words with lower impact on the semantic. In order to adequately evaluate the effectiveness of the proposed methods, we propose and utilize a dataset called Food-Recommendation DB (FRDB) focusing on food recommendation for women around pregnancy period or infants. Our summarization compression can reduce 65% of the retrieval token size with further 0.3% improvement on the accuracy; semantic compression provides a more flexible way to trade-off the token size with performance, for which we can reduce the token size by 20% with only 1.6% of accuracy drop.